Skip to main content
Log in

Theory of cyclotron superradiance from a moving electron bunch under group synchronism conditions

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A theory is presented of cyclotron superradiance from an electron bunch rotating in a uniform magnetic field and drifting at a velocity close to the group velocity of a wave propagating in a waveguide. It is shown that, in a comoving frame of reference, the bunch emits radiation at a frequency close to the cutoff frequency of the waveguide. Superradiance implies the azimuthal self-bunching of electrons, which is accompanied by coherent emission of the stored rotational energy in a short electromagnetic pulse. Linear and nonlinear stages of the process are analyzed. The growth rate of the superradiance instability is determined. It is shown that the maximum growth rate is attained under group synchronism conditions. The peak power and the characteristic duration of the cyclotron superradiance pulse are determined by numerical simulation. The characteristic features of the superradiance pulses are described in the comoving and laboratory frames. The results of theoretical analysis are compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Dicke, Phys. Rev. 99, 131 (1954).

    Google Scholar 

  2. A. V. Andreev, V. I. Emel’yanov, and Yu. A. Il’inskii, Cooperative Phenomena in Optics (Nauka, Moscow, 1988), p. 277.

    Google Scholar 

  3. V. V. Zheleznyakov, V. V. Kocharovskii, and Vs. V. Kocharovskii, Usp. Fiz. Nauk 159(2), 193 (1989) [Sov. Phys. Usp. 32, 835 (1989)].

    Google Scholar 

  4. R. Bonifachio, C. Maroli, and N. Piovella, Opt. Commun. 68, 369 (1988).

    ADS  Google Scholar 

  5. R. Bonifachio, N. Piovella, and B. W. J. McNeil, Phys. Rev. A 44, 3441 (1991).

    ADS  Google Scholar 

  6. R. Bonifachio, L. D. Salvo, L. Narducci, and E. D. Angelo, Phys. Rev. A 150, 50 (1994).

    Google Scholar 

  7. N. S. Ginzburg, Pis’ma Zh. Tekh. Fiz. 14, 440 (1988) [Sov. Tech. Phys. Lett. 14, 197 (1988)].

    Google Scholar 

  8. N. S. Ginzburg and A. S. Sergeev, Pis’ma Zh. Éksp. Teor. Fiz. 54, 445 (1991) [JETP Lett. 54, 446 (1991)].

    Google Scholar 

  9. D. A. Jarosynski, P. Chaix, N. Piovella, et al., Phys. Rev. Lett. 78, 1699 (1997).

    ADS  Google Scholar 

  10. V. I. Kanavets and A. Yu. Stabinis, Vestn. Mosk. Gos. Univ., Ser. Fiz. 14, 186 (1973).

    Google Scholar 

  11. V. V. Zheleznyakov, V. V. Kocharovskii, and Vs. V. Kocharovskii, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 29, 1095 (1986).

    ADS  Google Scholar 

  12. Yu. A. Il’inskii and N. S. Maslova, Zh. Éksp. Teor. Fiz. 94, 171 (1988) [Sov. Phys. JETP 67, 96 (1988)].

    ADS  Google Scholar 

  13. L. A. Vainshtein and A. I. Kleev, Dokl. Akad. Nauk SSSR 311, 862 (1990) [Sov. Phys. Dokl. 35, 359 (1990)].

    Google Scholar 

  14. E. S. Mchedlova and D. I. Trubetskov, Pis’ma Zh. Tekh. Fiz. 19(24), 26 (1993) [Tech. Phys. Lett. 19, 784 (1993)].

    Google Scholar 

  15. N. S. Ginzburg, I. V. Zotova, and A. S. Sergeev, Pis’ma Zh. Tekh. Fiz. 15(14), 83 (1989) [Sov. Tech. Phys. Lett. 15, 573 (1989)].

    Google Scholar 

  16. N. S. Ginzburg and A.S. Sergeev, Zh. Tekh. Fiz. 60(8), 40 (1990) [Sov. Phys. Tech. Phys. 35, 896 (1990)].

    Google Scholar 

  17. N. S. Ginzburg and A. S. Sergeev, Zh. Éksp. Teor. Fiz. 99, 438 (1991) [Sov. Phys. JETP 72, 243 (1991)].

    ADS  Google Scholar 

  18. N. S. Ginzburg and A. S. Sergeev, Fiz. Plazmy 17, 1318 (1991) [Sov. J. Plasma Phys. 17, 762 (1991)].

    Google Scholar 

  19. N. S. Ginzburg, I. V. Zotova, and A. S. Sergeev, Pis’ma Zh. Éksp. Teor. Fiz. 60, 501 (1994) [JETP Lett. 60, 513 (1994)].

    Google Scholar 

  20. N. S. Ginzburg, I. V. Zotova, A. S. Sergeev, et al., Pis’ma Zh. Éksp. Teor. Fiz. 63, 322 (1996) [JETP Lett. 63, 331 (1996)].

    Google Scholar 

  21. N. S. Ginzburg, I. V. Zotova, A. S. Sergeev, et al., Phys. Rev. Lett. 78, 2365 (1997).

    Article  ADS  Google Scholar 

  22. A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 28, 1538 (1975).

    Google Scholar 

  23. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975; Inostrannaya Literatura, Moscow, 1965).

    Google Scholar 

  24. V. V. Zheleznyakov, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 3, 57 (1960).

    Google Scholar 

  25. V. L. Bratman and M. I. Petelin, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 28, 1538 (1975).

    ADS  Google Scholar 

  26. V. L. Bratman, Zh. Tekh. Fiz. 46, 2030 (1976) [Sov. Phys. Tech. Phys. 21, 1188 (1976)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 70, No. 7, 2000, pp. 1–8.

Original Russian Text Copyright © 2000 by Ginzburg, Zotova, Sergeev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginzburg, N.S., Zotova, I.V. & Sergeev, A.S. Theory of cyclotron superradiance from a moving electron bunch under group synchronism conditions. Tech. Phys. 45, 813–820 (2000). https://doi.org/10.1134/1.1259731

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1259731

Keywords

Navigation