Skip to main content
Log in

Influence of lubricant on the motion of a body in an electromagnetic railgun accelerator. I. Electric current distribution in the accelerated body and the rails

  • Experimental Instruments and Techniques
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

An investigation is made of the influence of a liquid conducting film inserted in the gap between the accelerated metal projectile and the rails in a railgun accelerator on the distribution of the current density and the magnetic induction in the rails and the projectile. The film is assumed to be fairly thin, so that the variation of the magnetic induction across the film can be neglected. The problem is considered in a plane geometry. Approximate expressions are derived for the thickness of the velocity skin layer as a function of the thickness and conductivity of the film. The equations for diffusion of the magnetic field in the rails and in the projectile are integrated numerically. It is shown that the presence of a liquid conducting film can significantly suppress the velocity skin effect. Nevertheless, even when fairly thick films of fairly high resistivity are used, the nonuniformity of the electric current density distribution in the projectile still remains very high for the magnetic Reynolds numbers of practical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. C. Long, IEEE Trans. Magn. MAG-25, 347 (1989).

    Google Scholar 

  2. P. B. Parks, J. Appl. Phys. 67, 3511 (1990).

    Article  ADS  Google Scholar 

  3. L. E. Thurmond, B. K. Ahrens, and J. P. Barber, IEEE Trans. Magn. MAG-27, 326 (1991).

    ADS  Google Scholar 

  4. T. E. James, IEEE Trans. Magn. MAG-27, 482 (1991).

    ADS  Google Scholar 

  5. B. A. Uryukov, A. D. Lebedev, and K. K. Milyaev, in Proceedings of the Second All-Union Seminar on Dynamics of a High-Current Arc Discharge in a Magnetic Field [in Russian], Novosibirsk (1991) pp. 33–71.

  6. V. P. Bazilevskii, R. M. Zayatdinov, and Yu. A. Kareev, in Proceedings of the Second All-Union Seminar on Dynamics of a High-Current Arc Discharge in a Magnetic Field [in Russian], Novosibirsk (1991) ibid., pp. 285–303.

  7. A. P. Glinov, N. M. Kolyadin, A. E. Poltanov et al., in Proceedings of the Second All-Union Seminar on Dynamics of a High-Current Arc Discharge in a Magnetic Field [in Russian], Novosibirsk (1991) ibid., pp. 315–339.

  8. V. S. Yuferev, M. L. Gnedina, and N. Yu. Gnedin, Zh. Tekh. Fiz 62(1), 83 (1992) [Sov. Phys. Tech. Phys. 37, 41 (1992)].

    Google Scholar 

  9. Y. A. Dreizin, IEEE Trans. Magn. MAG-29, 798 (1993).

    ADS  Google Scholar 

  10. J. P. Barber and Y. A. Dreizin, IEEE Trans. Magn. MAG-31, 96 (1995).

    Google Scholar 

  11. T. E. James and D. C. James, IEEE Trans. Magn. MAG-31, 162 (1995).

    Google Scholar 

  12. Yu. A. Kareev and R. M. Zayatdinov, IEEE Trans. Magn. MAG-31, 180 (1995).

    Google Scholar 

  13. T. E. James, IEEE Trans. Magn. MAG-31, 622 (1995).

    Google Scholar 

  14. J. D. Powell and A. E. Zielinski, IEEE Trans. Magn. MAG-31, 645 (1995).

    Google Scholar 

  15. A. J. Schoolderman, IEEE Trans. Magn. MAG-31, 651 (1995).

    Google Scholar 

  16. M. Angeli, E. Gardelli, and B. Azzerboni, IEEE Trans. Magn. MAG-33, 37 (1997).

    Google Scholar 

  17. T. E. James and D. C. James, IEEE Trans. Magn. MAG-33, 86 (1997).

    Google Scholar 

  18. L. C. Woods, IEEE Trans. Magn. MAG-33, 152 (1997).

    Google Scholar 

  19. J. P. Barber, A. Challita, B. Maas, and L. E. Thurmond, IEEE Trans. Magn. MAG-27, 228 (1991).

    ADS  Google Scholar 

  20. J. P. Barber and A. Challita, IEEE Trans. Magn. MAG-29, 733 (1993).

    ADS  Google Scholar 

  21. I. S. Glushkov, Yu. A. Kareev, L. G. Kotova et al., IEEE Trans. Magn. MAG-33, 549 (1997).

    Google Scholar 

  22. K. T. Hsieh and B. K. Kim, IEEE Trans. Magn. MAG-33(1), 237 (1997).

    Google Scholar 

  23. D. J. Hildenbrand, J. R. Rapka, and B. J. Long, IEEE Trans. Magn. MAG-33(1), 74 (1997).

    Google Scholar 

  24. B. A. Uryukov, A. D. Lebedev, and C. C. Milyaev, in Proceedings of the Fourth European Symposium on Electromagnetic Launch Technology, Gelle, Germany, 1993, Paper No. P1511.

  25. R. Crawford, J. Taylor, and D. Keefer, IEEE Trans. Magn. MAG-31, 138 (1997).

    Google Scholar 

  26. C. Persad, A. Yeoh, G. Prabhu et al., IEEE Trans. Magn. MAG-33, 140 (1997).

    Google Scholar 

  27. S. R. Kerwien, IEEE Trans. Magn. MAG-33, 104 (1997).

    Google Scholar 

  28. C. J. Quon, Fluid Mech. 181, 233 (1987).

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Tekh. Fiz. 69, 103–111 (July 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drobyshevskii, É.M., Kolesnikova, É.N. & Yuferev, V.S. Influence of lubricant on the motion of a body in an electromagnetic railgun accelerator. I. Electric current distribution in the accelerated body and the rails. Tech. Phys. 44, 831–838 (1999). https://doi.org/10.1134/1.1259359

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1259359

Keywords

Navigation