Skip to main content
Log in

Modeling the development of the stepped leader of a lightning discharge

  • Gas Discharges, Plasmas
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A stochastic-deterministic model is presented for the propagation of a downward-moving leader. Lightning formation is described by a stochastic growth of branching discharge channels which is determined by the electrostatic field. The dynamics of the electric field and of the charge distribution over the lightning structure are calculated deterministically. The model includes the initiation of lightning, a preliminary discharge in a cloud, the propagation of a downwardmoving stepped leader toward the earth, and the initiation and upward motion of a return stroke from the earth’s surface. Numerical execution of the model yields a dynamic picture of the development of the downward-moving leader and of the intracloud discharge structure. The effect of the charge density in the cloud and the parameters of the developing channels on the spatial-temporal, current, and charge characteristics of the stepped leader’s propagation are studied. The effect of free-standing structures on the distribution of points on the earth’s surface where lightning strikes is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Krider, in The Earth’s Electrical Environment, National Academy Press, Washington (1986), p. 263.

    Google Scholar 

  2. A. M. Uman, The Lightning discharge, Academic Press, London (1987), p. 397.

    Google Scholar 

  3. É. M. Bazelyan and Yu. P. Raizer, Spark Discharges [in Russian], Izd. MFTI (1997), 320 pp.

  4. L. Niemeyer, J. Phys. D 20, 897 (1987).

    Article  ADS  Google Scholar 

  5. Z. Kawasaki, M. Nakano, T. Takeuti et al., in Proceedings of the International Conference on Atmospheric Electricity (1988), pp. 483–488.

  6. Z. Kawasaki, K. Matsuura, M. Nakano et al., Res. Lett. Atmospheric Electricity 9, 63 (1989).

    Google Scholar 

  7. L. Dellera and E. Garbagnati, IEEE Trans. Power Deliv. PD-5, 2009 (1990).

    Google Scholar 

  8. L. Dellera and E. Garbagnati, IEEE Trans. Power Deliv. PD-5, 2023 (1990).

    Google Scholar 

  9. T. Takeuti, T. Hashimoto, and N. Takagi, J. Atmos. Electr. 13, 9 (1993).

    Google Scholar 

  10. T. Takeuti, T. Hashimoto, and N. Takagi, in Eighth International Symposium on High Voltage Engineering, Yokohama, Japan (1993), pp. 265–267.

  11. A. S. Gaixorovsky and K. V. Karasyuk, in Eighth International Symposium on High Voltage Engineering, Yokohama, Japan (1993), pp. 277–280.

  12. N. I. Petrov and G. N. Petrova, Pis’ma Zh. Tekh. Fiz. 18(3), 14 (1992) [Sov. Tech. Phys. Lett. 18, 65 (1992)].

    Google Scholar 

  13. L. Ruhnke and V Mazuk, in Tenth International Conference on Atmospheric Electricity, Osaka, Japan (1996), pp. 192–195.

  14. L. Niemeyer, L. Pietronero, and H. J. Wiesmann, Phys. Rev. Lett. 52, 1033 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  15. V. R. Kukhta, V. V. Lopatin, and M. D. Noskov, Zh. Tekh. Fiz. 65(2), 63 (1995) [Tech. Phys. 40, 150 (1995)].

    Google Scholar 

  16. A. Dulson, M. Noskov, V. Lopatin and D. Shelukhin, in Tenth International Conference on Atmospheric Electricity, Osaka, Japan (1996), pp. 260–263.

  17. V. Lopatin, M. Noskov, and O. I. Pleshkov, in Proceedings of the 12th International Conference on Gas Discharges and Their Application, Greifswald, Germany (1997), pp. 432–435.

  18. P. L. Rustan, M. A. Uman, D. G. Childer et al., J. Geophys. Res. 85, 4893 (1980).

    ADS  Google Scholar 

  19. D. E. Proctor, J. Geophys. Res. 88, 5421 (1983).

    ADS  MathSciNet  Google Scholar 

  20. L. Maier, C. Lennon, P. Krehbiel et al., Tenth International Conference on Atmospheric Electricity, Osaka, Japan (1996), pp. 280–283.

  21. É. M. Bazelyan, B. N. Gorin, and V. I. Levitov, Physical and Engineering Foundations of Lightning Protection [in Russian], Gidrometeoizdat, Leningrad (1978), p. 222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Tekh. Fiz. 69, 48–53 (April 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dul’zon, A.A., Lopatin, V.V., Noskov, M.D. et al. Modeling the development of the stepped leader of a lightning discharge. Tech. Phys. 44, 394–398 (1999). https://doi.org/10.1134/1.1259308

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1259308

Keywords

Navigation