Skip to main content
Log in

Effect of molecular nitrogen on the electron mobility in a mixture of argon and optically excited sodium vapor

  • Atoms, Spectra, and Radiation
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A parametric study of the electron energy distribution function (EEDF) and the electron mobility in the mixture Na + Ar + N2 is carried out. An analysis is made of the conditions that obtain in a photoplasma when the detachment of the mean electron energy from the neutral gas temperature is due to superelastic collisions (collisions of the second kind) with excited sodium atoms. The case of low ionization of the medium at low vibrational temperatures of the ground state of the nitrogen molecules is considered. To find the EEDF a numerical solution of the Boltzmann transport equation is carried out. It is found that in the indicated mixture the presence of nitrogen leads to a depletion of the EEDF in the region of efficient vibrational excitation of the molecules and promotes the formation of inversion in the EEDF ∂f(ɛ)/∂ɛ>0 in the energy range corresponding to the Ramsauer minimum in the cross section of elastic collisions of electrons with the argon atoms. It is shown that the nonequilibrium character of the EEDF leads to a complicated dependence of the electron mobility on the partial ratios of the components of the mixture, the degree of ionization of the medium, and the population of the resonantly excited sodium atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. L. Highan, Phys. Rev. A 2, 1989 (1970).

    ADS  Google Scholar 

  2. R. I. Lyagushchenko and M. B. Tendler, Fiz. Plazmy 1, 836 (1975) [Sov. J. Plasma Phys. 1, 458 (1975)].

    Google Scholar 

  3. N. L. Aleksandrov, A. M. Konchakov, and É. E. Son, Fiz. Plazmy 4, 169 (1978) [Sov. J. Plasma Phys. 4, 98 (1978)].

    Google Scholar 

  4. A. Kh. Mnatsakanyan and G. V. Naidis, Fiz. Plazmy 2, 152 (1976) [Sov. J. Plasma Phys. 2, 84 (1976)].

    Google Scholar 

  5. N. L. Aleksandrov, A. M. Konchakov, and É. E. Son, Fiz. Plazmy 4, 1182 (1978) [Sov. J. Plasma Phys. 4, 663 (1978)].

    Google Scholar 

  6. C. Gorse, M. Cacciatore, and M. Capitelli et al., Chem. Phys. 119, 63 (1988).

    Article  Google Scholar 

  7. N. L. Aleksandrov and I. V. Kochetov, J. Phys. D 26, 387 (1993).

    Article  ADS  Google Scholar 

  8. N. L. Aleksandrov, A. V. Dem’yanov, and I. V. Kochetov et al., Fiz. Plazmy 23, 658 (1997).

    Google Scholar 

  9. A. G. Ponomarenko, V. N. Tishchenko, and V. A. Shveigert, Teplofiz. Vys. Temp. 25, 787 (1987).

    Google Scholar 

  10. F. Paniccia, C. Gorse, J. Bretagne, and M. Capitelli, J. Appl. Phys. 59, 4004 (1986).

    Article  ADS  Google Scholar 

  11. N. A. Gorbunov, N. B. Kolokolov, and A. A. Kudryavtsev, Zh. Tekh. Fiz. 61(6), 52 (1991) [Sov. Phys. Tech. Phys. 36, 616 (1991)].

    Google Scholar 

  12. N. A. Dyatko, I. V. Kochetov, and A. P. Napartovich, J. Phys. D 26, 418 (1993).

    Article  ADS  Google Scholar 

  13. G. Colonna, C. Gorse, and M. Capitelli et al., Chem. Phys. Lett. 213, 5 (1993).

    Article  Google Scholar 

  14. H. Amemiya, S. Ono, and S. Teii, J. Appl. Phys. 56, 4312 (1987).

    Google Scholar 

  15. N. A. Gorbunov, F. E. Latyshev, and A. S. Mel’nikov, Fiz. Plazmy 24, 950 (1998).

    Google Scholar 

  16. N. A. Gorbunov, Ph. E. Latyshev, and A. S. Melnikov et al., 23rd ICPIG, Toulouse, 1997, Vol. 1, p. 80.

    Google Scholar 

  17. N. A. Gorbunov, A. S. Melnikov, and I. A. Movtchan, 28th EGAS, Berlin, 1997, p. 561.

  18. N. A. Gorbunov, F. E. Latyshev, and A. S. Mel’nikov et al., FPPT-2, Minsk, 1997, Vol. 1, p. 9.

    Google Scholar 

  19. T. Stacewicz and J. Krasinski, Opt. Commun. 39, 35 (1981).

    Article  ADS  Google Scholar 

  20. L. D. Tsendin, Plasma Sources Sci. Technol. 4, 200 (1995).

    Article  ADS  Google Scholar 

  21. N. A. Gorbunov, K. O. Iminov, and A. A. Kudryavtsev, Zh. Tekh. Fiz. 58, 2301 (1988) [Sov. Phys. Tech. Phys. 33, 1403 (1988)].

    Google Scholar 

  22. A. I. Korotkov, A. A. Kudryavtsev, and N. A. Khromov, Zh. Tekh. Fiz. 66(10), 92 (1996) [Tech. Phys. 41, 1020 (1996)].

    Google Scholar 

  23. Yu. P. Raizer, Physics of Gas Discharge [in Russian], Nauka, Moscow, 1987.

    Google Scholar 

  24. L. G. H. Huxley and R. W. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley, New York, 1974).

    Google Scholar 

  25. I. P. Zapesochnyi, E. N. Postoi, and I. S. Aleksakhin, Zh. Éksp. Teor. Fiz. 68, 1724 (1975) [Sov. Phys. JETP 41, 865 (1975).

    Google Scholar 

  26. A. V. Eletskii, L. A. Palkina, and B. M. Smirnov, Transport Phenomena in a Weakly Ionized Plasma [in Russian], Atomizdat, Moscow, 1975.

    Google Scholar 

  27. Sh. F. Araslanov, Dep. VINITI No. 2187-B87 [in Russian], All-Union Institute of Scientific and Technical Information, Moscow (1987), 68 pp.

  28. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 4, Constants of Diatomic Molecules (Van Nostrand, New York, 1979).

    Google Scholar 

  29. M. G. Zhabitskii and V. P. Silakov, MIFI Preprint No. 15-88 [in Russian], Moscow Engineering Physics Institute, Moscow (1988), 24 pp.

  30. N. A. Dyatko, I. V. Kochetov, and A. P. Napartovich, Pis’ma Zh. Tekh. Fiz. 13, 1457 (1987) [Tech. Phys. Lett. 13, 610 (1987)].

    Google Scholar 

  31. V. I. Ochkur, private communication.

  32. U. Krishnan and B. Stumpf, At. Data Nucl. Data Tables 51, 151 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Tekh. Fiz. 69, 14–19 (April 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbunov, N.A., Mel’nikov, A.S. Effect of molecular nitrogen on the electron mobility in a mixture of argon and optically excited sodium vapor. Tech. Phys. 44, 361–366 (1999). https://doi.org/10.1134/1.1259302

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1259302

Keywords

Navigation