Skip to main content
Log in

Development of shearing instability in metals

  • Solids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The development of instability on a contact interface between steel objects is detected experimentally when it is loaded by an oblique shock wave. It is shown that disturbances form in the stage of shock-wave loading (Δt<1µs, ΔU>1mm/µs) when the layers turn and the metals pass into a quasiliquid state. Then, at a relative slip velocity \(\Delta \overline U \approx 0.1mm/\mu s\) the initial disturbances grow according to an exponential law and are “frozen” when the rarefaction wave reaches the contact interface (when the contact zone of the metal “escapes” from the plastic state).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hydrodynamic Instability, American Mathematical Society, Providence (1962); Mir, Moscow (1964), 372 pp.

  2. E. E. Meshkov, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza No. 5, 151 (1969).

  3. G. Birkhoff, Hydrodynamics: a Study in Logic, Fact, and Similitude, 2nd ed., Princeton University Press, Princeton, NJ (1960); IL, Moscow (1964), 244 pp.

    Google Scholar 

  4. J. W. Miles, General Atomics Rep. Gamo (1960), p. 7335.

  5. D. C. Drucker, Introduction to Mechanics of Deformable Solids, McGraw-Hill, New York (1967); Mir, Moscow (1983), 162 pp.

    Google Scholar 

  6. V. A. Andronov, C. M. Bakhrakh, and V. V. Nikiforov, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza No. 6, 20 (1984).

  7. E. E. Meshkov, in International Workshop of the Physics of Compressible Turbulent Mixing, Princeton, NJ (1988).

  8. P. N. Nizovtsev and V. A. Raevskii, Vopr. At. Nauki Tekh., Ser. Teor. Prikl. Fiz. No. 3, 11 (1991).

  9. S. M. Bakhrakh and N. P. Kovalev, in Proceedings of the 5th All-Union Conference on Numerical Methods for Solving Problems in the Theory of Elasticity and Plasticity [in Russian], Novosibirsk (1978), pp. 22–36.

  10. A. Amsden and F. N. Harlow, Phys. Fluids 7, 327 (1964).

    Article  MathSciNet  Google Scholar 

  11. G. Birkhoff and E. H. Zarantonello, Jets, Wakes, and Cavities, Academic Press, New York (1957); Mir, Moscow (1964), 466 pp.

    Google Scholar 

  12. G. R. Cowan, O. R. Bergmann, and A. H. Holtzman, Metall. Trans. 2, 3145 (1971).

    Google Scholar 

  13. G. R. Cowan and A. H. Holtzman, J. Appl. Phys. 34, 928 (1963).

    ADS  Google Scholar 

  14. J. N. Hunt, Philos. Mag. 17(148), 669 (1968).

    Google Scholar 

  15. J. L. Robinson, Philos. Mag. 31(3), 587 (1975).

    Google Scholar 

  16. A. V. Utkin, A. N. Dremin, and A. N. Mikhailov, Fiz. Goreniya Vzryva 16(4), 126 (1980).

    Google Scholar 

  17. A. L. Mikhailov, Fiz. Goreniya Vzryva 15(2), 158 (1979).

    Google Scholar 

  18. A. I. Pavlovskii, G. D. Kuleshov, and G. V. Sklizkov, Dokl. Akad. Nauk 160, 68 (1965).

    Google Scholar 

  19. A. Dubovik, The Photographic Recording of High-Speed Processes, John Wiley, New York (1981); 3rd. ed., Nauka, Moscow (1984), 320 pp.

    Google Scholar 

  20. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York (1948); IL, Moscow (1950), 426 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Tekh. Fiz. 69, 38–43 (February 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drennov, O.B. Development of shearing instability in metals. Tech. Phys. 44, 166–170 (1999). https://doi.org/10.1134/1.1259278

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1259278

Keywords

Navigation