Skip to main content
Log in

Numerical calculation of the rate of strain of interstitial solid solutions under irradiation. I. Model of radiation creep

  • Solids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A model of radiation creep of interstitial solid solutions is developed on the basis of the combined motion of dislocations, including their glide and climb past obstacles. The obstacles considered are forest dislocations and pileups of radiation-induced point defects. A computational formula for the rate of strain is derived which describes creep at high stresses, when the gliding dislocations overcome some of the barriers by force, and a method is described for determining the average distance traversed by a dislocation in the glide plane under the influence of the stress until it is stopped by barriers. The results are compared with those of other authors. It is shown that the formula obtained for the rate of strain goes over in particular cases to those given by the previously known SIPA, Gittus-Mansur, and glide-climb models of radiation creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. M. Williams, J. Nucl. Mater. 88, 217 (1980).

    ADS  Google Scholar 

  2. Yu. M. Platov, S. V. Simakov, and A. B. Tsepelev, Fiz. Khim. Obrab. Mater., No. 1, pp. 11–13 (1989).

  3. V. N. Voevodin, V. F. Zelenskii, M. P. Zaidlits et al., Vopr. At. Nauki Tekh. Ser. Fiz. Radiats. Povrezh. Radiats. Materialoved. (Kharkov), No. 1(12), pp. 68–71 (1980).

  4. O. A. Medvedev, A. I. Ryazanov, A. N. Lyubimov et al., J. Nucl. Mater. 233–237, 460 (1996).

    Google Scholar 

  5. E. S. Aithozhin and E. V. Chumakov, J. Nucl. Mater. 233–237, 537 (1996).

    Google Scholar 

  6. L. K. Mansur and M. H. Yoo, J. Nucl. Mater. 74, 228 (1978).

    Article  Google Scholar 

  7. L. N. Davydov and N. M. Kiryukhin, Vopr. At. Nauki Tekh. Ser. Fiz. Radiats. Povrezh. Radiats. Materialoved. (Kharkov), No. 2(13), 10–12 (1980).

  8. Yu. V. Trushin, Zh. Tekh. Fiz. 62, 1 (1992) [Sov. Phys. Tech. Phys. 37, 353 (1992)].

    Google Scholar 

  9. Yu. V. Trushin, Zh. Tekh. Fiz. 62, 13 (1992) [Sov. Phys. Tech. Phys. 37, 360 (1992)].

    Google Scholar 

  10. F. V. Nolfi Jr., Phase Transformations during Irradiation [Applied Science Publishers, London; Elsevier, New York (1983); Metallurgiya, Chelyabinsk (1989), 312 pp.].

  11. Yu. S. Pyatiletov and N. I. Edemskii, Zh. Tekh. Fiz. 62, 89 (1992) [Sov. Phys. Tech. Phys. 37, 1089 (1992)].

    Google Scholar 

  12. Z. K. Saralidze, Fiz. Met. Metalloved. 81, 159 (1996).

    Google Scholar 

  13. V. L. Indenbom and Z. K. Saralidze, Elastic Strain Fields and Dislocation Mobility, Vol. 31 of Modern Problems in Condensed Matter Sciences, edited by V. L. Indenbom and J. Lothe, North Holland, New York (1992), Ch. 12, pp. 699–744.

    Google Scholar 

  14. P. T. Heald and M. V. Speight, Acta Metall. 23, 1389 (1975).

    Google Scholar 

  15. C. H. Woo, F. A. Garner, and R. A. Holt, in Effects of Radiation on Materials, 16th Intern. Symp. ASTM STP 1175, American Society for Testing and Materials, Philadelphia (1993), pp. 27–37.

    Google Scholar 

  16. W. G. Wolfer, J. P. Foster, and F. A. Garner, Nucl. Technol. 16, 55 (1972).

    Google Scholar 

  17. S. D. Harkness, J. A. Tesk, and C.-Yu. Li, Nucl. Appl. Technol. 9, 24 (1970).

    Google Scholar 

  18. J. H. Gittus, Philos. Mag. 25, 345 (1972).

    Google Scholar 

  19. L. K. Mansur, Philos. Mag. A 39, 497 (1979).

    Google Scholar 

  20. P. T. Heald and J. E. Harbottle, J. Nucl. Mater. 67, 229 (1977).

    Article  Google Scholar 

  21. F. S. Ham, J. Appl. Phys. 30, 915 (1959).

    Google Scholar 

  22. I. G. Margvelashvili and Z. K. Saralidze, Fiz. Tverd. Tela (Leningrad) 15, 2665 (1973) [Sov. Phys. Solid State 15, 1774 (1973)].

    Google Scholar 

  23. G. Z. Gorbatov, Fiz. Met. Metalloved. 48, 100 (1979).

    Google Scholar 

  24. Yu. V. Trushin and A. N. Orlov, Zh. Tekh. Fiz. 56, 1302 (1986) [Sov. Phys. Tech. Phys. 31, 763 (1986)].

    Google Scholar 

  25. J. P. Hirth and J. Lothe, Theory of Dislocations [McGraw-Hill, New York (1967); Atomizdat, Moscow (1972), 600 pp.].

    Google Scholar 

  26. V. V. Kirsanov, Yu. S. Pyatiletov, and O. G. Tyupkina, Pis’ma Zh. Tekh. Fiz. 6, 1183 (1980) [Sov. Tech. Phys. Lett. 6, 506 (1980)].

    Google Scholar 

  27. Yu. S. Pyatiletov, Fiz. Met. Metalloved. 54, 1080 (1982).

    Google Scholar 

  28. A. J. E. Foreman and M. J. Makin, Philos. Mag. 14, 911 (1966).

    Google Scholar 

  29. A. L. Bement Jr., Rev. Roum. Phys. 17, 360 (1972).

    Google Scholar 

  30. Yu. S. Pyatiletov and O. G. Tyupkina, Fiz. Met. Metalloved. 55, 792 (1983).

    Google Scholar 

  31. Yu. S. Pyatiletov and D. Sh. Ibragimova, Fiz. Met. Metalloved., No. 1, pp. 17–23 (1992).

  32. D. Sh. Ibragimova, A. N. Karpikov, D. A. Nazyrova et al., Preprint IFÉ NYaTs RK, No. 1-94 [in Russian], National Nuclear Center of the Republic of Kazakhstan, Alma-Ata (1994), 32 pp.

  33. A. D. Brailsford and R. Bullough, Sov. Phys. Tech. Phys. 302, 87 (1981).

    Google Scholar 

  34. A. N. Orlov and Yu. V. Trushin, in Radiation Defects in Metallic Crystals [in Russian], edited by Sh. Sh. Ibragimov, Nauka KazSSR, Alma-Ata (1978), pp. 30–40.

    Google Scholar 

  35. V. V. Kirsanov, Yu. S. Pyatiletov, and T.É. Turkebaev, Zh. Tekh. Fiz. 55, 698 (1985) [Sov. Phys. Tech. Phys. 30, 411 (1985)].

    Google Scholar 

  36. M. S. Bakhvalov, Numerical Methods (Analysis, Algebra, and Ordinary Differential Equations [in Russian], Nauka, Moscow (1973), 632 pp.

    Google Scholar 

  37. S. I. Golubov and E. N. Kaipetskaya, in Computers and the Modeling of Defects in Crystals [in Russian], Leningrad (1982), pp. 76–77.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Tekh. Fiz. 69, 64–71 (January 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyatiletov, Y.S., Lopuga, A.D. Numerical calculation of the rate of strain of interstitial solid solutions under irradiation. I. Model of radiation creep. Tech. Phys. 44, 59–65 (1999). https://doi.org/10.1134/1.1259252

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1259252

Keywords

Navigation