Skip to main content
Log in

Fast nonequilibrium induction detectors based on thin superconducting films

  • Solid-State Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A new type of fast detector is proposed. The operation of the detector is based on the change induced in the kinetic inductance of NbN and YBa2Cu3O7−δ superconducting films by nonequilibrium quasiparticles produced by electromagnetic radiation. The speed of a NbN detector is essentially temperature-independent and is less than 1 ps. A model based on the Omen-Scalapino scheme describes well the experimental dependence of the voltage-power sensitivity of a NbN detector on the modulation frequency of the radiation. A low equilibrium quasiparticle density and a high quantum yield give detecting power D*=1012W−1 · cm · Hz1/2 at temperature T=4.2 K and D*=1016 W−1 · cm · Hz1/2 at temperature T=1.6 K. The time constant of the low-temperature YBaCuO induction detector is determined only by the electron-phonon interaction time τ de-ph in the nodal regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Gershenzon, M. E. Gershenzon, G. N. Gol’tsman et al., Zh. Tekh. Fiz. 59(2), 111 (1989) [Sov. Phys. Tech. Phys. 34, 195 (1989)].

    Google Scholar 

  2. B. M. Voronov, E. M. Gershenzon, G. N. Gol’tsman et al., SFKHT 5, 955 (1992).

    Google Scholar 

  3. E. M. Gershenzon, I. G. Gogidze, G. N. Gol’tzman et al., Pis’ma Zh. Tekh. Fiz. 17(22), 6 (1991) [Sov. Tech. Phys. Lett. 17(11), 786 (1991)].

    Google Scholar 

  4. M. Danerud, D. Winkler, M. Lindgren et al., J. Appl. Phys. 76, 1902 (1994).

    Article  ADS  Google Scholar 

  5. S. L. Anisimov, B. L. Kapelevich, and T. L. Perel’man, Zh. Éksp. Teor. Fiz. 66, 776 (1974) [Sov. Phys. JETP 39, 375 (1974)].

    ADS  Google Scholar 

  6. G. L. Eesley, J. Heremans, M. S. Meyer et al., Phys. Rev. Lett. 65, 3445 (1990).

    Article  ADS  Google Scholar 

  7. A. D. Semenov, R. S. Nebosis, Yu. P. Gousev et al., Phys. Rev. B 52, 581 (1995).

    Article  ADS  Google Scholar 

  8. A. Frenkel, Phys. Rev. B 48, 9717 (1993).

    ADS  MathSciNet  Google Scholar 

  9. E. M. Gershenzon, M. E. Gershenzon, G. N. Gol’tsman et al., Zh. Éksp. Teor. Fiz. 86, 758 (1984) [Sov. Phys. JETP 59, 442 (1984)].

    Google Scholar 

  10. D. G. McDonald, Appl. Phys. Lett. 50, 775 (1987).

    Article  ADS  Google Scholar 

  11. J. E. Sauvageau and D. G. McDonald, IEEE Trans. Magn. Magn. MAG-25, 1331 (1989).

    ADS  Google Scholar 

  12. J. E. Sauvageau, D. G. McDonald, and E. N. Grossman, ISN, 372 (1990).

  13. E. N. Grossman, D. G. McDonald, and J. E. Sauvageau, IEEE Trans. Magn. MAG-27, 2677 (1991).

    ADS  Google Scholar 

  14. J. E. Sauvageau, D. G. McDonald, and E. N. Grossman, IEEE Trans. Magn. MAG-27, 2757 (1991).

    ADS  Google Scholar 

  15. S. B. Kaplan, C. C. Chi, D. N. Langenberg et al., Phys. Rev. B 14, 4854. (1974).

    ADS  Google Scholar 

  16. A. V. Sergeev and M. Yu. Reizer, Int. J. Mod. Phys. B 10, 635 (1996).

    ADS  Google Scholar 

  17. B. M. Voronov, E. M. Gershenzon, L. A. Seidman et al., Sverkhprovodimost’ (KIAE) 7, 1097 (1994).

    Google Scholar 

  18. G. N. Gol’tsman, P. B. Kouminov, I. G. Goghidze, and E. M. Gershenzon, IEEE Trans. Appl. Supercond. AS-5, 2591 (1995).

    Google Scholar 

  19. N. Bluzer, J. Appl. Phys. 78, 7340 (1995).

    Article  ADS  Google Scholar 

  20. C. S. Omen and D. J. Scalapino, Phys. Rev. Lett. 28, 1559 (1972).

    ADS  Google Scholar 

  21. G. N. Gol’tsman, A. D. Semenov, V. P. Gousev et al., Semicond. Sci. Technol. 4, 453 (1991).

    Google Scholar 

  22. A. S. Kazeroonion, T. K. Cheng, and S. D. Brorson, Solid State Commun. 78, 95 (1991).

    Google Scholar 

  23. É. E. Aksaev, E. M. Gershenzon, G. N. Gol’tsman et al., Sverkhprovodimost’ (KIAE) 3, 1928 (1990) [Superconductivity 3, S328 (1990)].

    Google Scholar 

  24. K. Kitazawa, Physica C 235–240, p. XXIII.

  25. D. A. Wollman, D. J. Van Harlingen, W. C. Lee et al., Phys. Rev. Lett. 71, 2134 (1993).

    Article  ADS  Google Scholar 

  26. D. Pines, Physica B 199–200, 300 (1994).

    Google Scholar 

  27. Sun Ye and K. Maki, Phys. Rev. B 51, 6059 (1995).

    Article  ADS  Google Scholar 

  28. A. V. Sergeev, A. D. Semenov, P. B. Kouminov et al., Phys. Rev. B 49, 9091 (1994).

    Article  ADS  Google Scholar 

  29. J. Clarke, G. I. Hoffer, P. L. Richards, and N. H. Yeh, J. Appl. Phys. 48, 4865 (1977).

    Article  ADS  Google Scholar 

  30. E. M. Gershenzon, G. N. Gol’tsman, B. S. Karasik et al., Sverkhprovodimost’ (KIAE) 5, 1129 (1992) [Superconductivity 5, 1126 (1992)].

    Google Scholar 

  31. P. L. Richards, J. Appl. Phys. 76, 1 (1994).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Tekh. Fiz. 68, 63–69 (October 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogidze, I.G., Kuminov, P.B., Sergeev, A.V. et al. Fast nonequilibrium induction detectors based on thin superconducting films. Tech. Phys. 43, 1193–1198 (1998). https://doi.org/10.1134/1.1259153

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1259153

Keywords

Navigation