Skip to main content
Log in

Magnetostatic surface waves produced by an inhomogeneity of the anisotropy with a turning point of the spectral function on a ferromagnet surface

  • Radiophysics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Magnetostatic surface waves with fixed frequency and wave vector are predicted to exist in a ferromagnet with an inhomogeneity of the magnetic anisotropy such that the spectral function has a turning point on the surface. This result is most important for the case when an external magnetic field magnetizes the ferromagnet perpendicular to its surface. The frequency of the surface wave is determined by the frequency of the magnetostatic volume wave at the surface of the ferromagnet, and the wave vector is determined by the surface values of the local magnetic anisotropy field and its derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Vittoria and J. H. Schelleng, Phys. Rev. B 18, 4020 (1977).

    ADS  Google Scholar 

  2. C. Borghese, P. De Gasperies, and R. Tappa, Solid State Commun. 25, 21 (1978).

    Article  Google Scholar 

  3. A. H. Eschenfel’der, Magnetic Bubble Technology, Springer-Verlag, Berlin (1980); Mir, Moscow (1983), 496 pp.

    Google Scholar 

  4. V. S. Speriosu and C. H. Wilts, J. Appl. Phys. 54, 3325 (1983).

    Article  ADS  Google Scholar 

  5. C. H. Wilts, H. Awano, and V. S. Speriosu, J. Appl. Phys. 57, 2161 (1985).

    Article  ADS  Google Scholar 

  6. C. H. Wilts and S. Prased, IEEE Trans. Magn. MAG-17, 2045 (1981).

    Google Scholar 

  7. V. É. Osukhovskii, D. E. Linkova, Z. Z. Ditina et al., Fiz. Tverd. Tela (Leningrad) 26, 1533 (1984) [Sov. Phys. Solid State 26, 933 (1984)].

    Google Scholar 

  8. G. A. Shmatov, V. N. Filippov, V. B. Sadkov, and I. I. Kryukov, Pis’ma Zh. Tekh. Fiz. 15(17), 86 (1989) [Sov. Tech. Phys. Lett. 15, 699 (1989)].

    Google Scholar 

  9. A. I. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletminskii, Spin Waves, North-Holland, Amsterdam (1968) [Russian original, Nauka, Moscow (1967), 368 pp.].

    Google Scholar 

  10. V. G. Bar’yakhtar and M. I. Kaganov, “Inhomogeneous resonance and spin waves,” in Ferromagnetic Resonance [in Russian], Fizmatgiz, Moscow (1961), pp. 266–284.

    Google Scholar 

  11. G. A. Vugal’ter and I. A. Gilinskii, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 32, 1187 (1989).

    ADS  Google Scholar 

  12. B. N. Filippov, Fiz. Met. Metalloved. 32, 911 (1971).

    Google Scholar 

  13. B. N. Filippov and I. G. Tityakov, Fiz. Met. Metalloved. 35, 28 (1973).

    Google Scholar 

  14. R. E. De Wames and T. Wolfram, J. Appl. Phys. 41, 987 (1970).

    Google Scholar 

  15. B. R. Tittman, R. E. De Wames, R. D. Henry, and P. J. Besser, Trudy MKM-73, Vol. 2, pp. 19–27 (1974).

    Google Scholar 

  16. J. T. Yu, R. A. Turk, and P. E. Wigen, Phys. Rev. B 5, 420 (1972).

    Google Scholar 

  17. F. R. Morgenthaler, IEEE Trans. Magn. MAG-13, 1252 (1977).

    Google Scholar 

  18. F. R. Morgenthaler, J. Appl. Phys. 52, 2267 (1981).

    Article  ADS  Google Scholar 

  19. P. Hartemann and D. Fontaine, IEEE Trans. Magn. MAG-18, 1595 (1982).

    Google Scholar 

  20. N. I. Lyashenko and V. M. Talalaevskii, Ukr. Fiz. Zh. 31, 1716 (1986).

    Google Scholar 

  21. Yu. V. Gulyaev, I. A. Ignat’ev, A. F. Popkov, and V. M. Shabunin, in Abstracts of the 10th All-Union School-Seminar on New Magnetic Materials for Microelectronics [in Russian], Riga (1986), Part 1, pp. 176–177.

  22. I. G. Kudryashkin, D. G. Krutogin, E. A. Ladygin et al., Zh. Tekh. Fiz. 59(3), 70 (1989) [Sov. Phys. Tech. Phys. 34, 294 (1989)].

    Google Scholar 

  23. Yu. M. Yakovlev, E. G. Rzhakhina, T. A. Kyrlova et al., Fiz. Tverd. Tela (Leningrad) 30, 622 (1988) [Sov. Phys. Solid State 30, 360 (1988)].

    Google Scholar 

  24. I. V. Zavislyan and A. F. Kalaida, Vestn. Kievsk. Univ. Ser. Fiz., No. 23, pp. 75–79 (1982).

  25. I. Yu. Gaiovich, G. P. Golovach, I. V. Zavislyan, and V. F. Romanyuk, Fiz. Tverd. Tela (St. Petersburg) 34, 1680 (1992) [Sov. Phys. Solid State 34, 893 (1992)].

    Google Scholar 

  26. I. A. Viktorov, Acoustic Surface Waves in Solids [in Russian], Nauka, Moscow (1981), 288 pp.

    Google Scholar 

  27. E. Dieulesant and D. Royer, Elastic Waves in Solids, Wiley, New York (1980); Nauka, Moscow (1982), 434 pp.

    Google Scholar 

  28. A. Nayfeh, Introduction to Perturbation Techniques, Wiley, New York (1981); Mir, Moscow (1984), 534 pp.

    Google Scholar 

  29. M. V. Fedoryuk, Asymptotic Methods for Linear Ordinary Differential Equations [in Russian], Nauka, Moscow (1983), 352 pp.

    Google Scholar 

  30. E. Jahnke, F. Emde, and F. Loesch, Tables of Higher Functions, 6th ed., McGraw-Hill, New York (1960); Nauka, Moscow (1977), 344 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Tekh. Fiz. 68, 118–123 (June 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaibichev, I.A., Shavrov, V.G. Magnetostatic surface waves produced by an inhomogeneity of the anisotropy with a turning point of the spectral function on a ferromagnet surface. Tech. Phys. 43, 720–725 (1998). https://doi.org/10.1134/1.1259060

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1259060

Keywords

Navigation