Skip to main content
Log in

Steady-state leader breakdown. Nitrogen atmosphere

  • Gas Discharges, Plasmas
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Physical arguments about the possible mechanism of formation of a leader channel are presented. A mathematical model describing steady-state leader breakdown is constructed. An algorithm for determining the propagation velocity, dimensions, and electric field in the streamer zone is developed. A numerical simulation of the channel formation stage in the plasma of a streamer zone a nitrogen atmosphere is performed. The dependence of the leader velocity on the potential is obtained. The tentative model proposed here can be used to describe the leader breakdown of a long gap at high positive potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. P. Raizer, Physics of Gas Discharge [in Russian] (Nauka, Moscow, 1987), 591 pp.

    Google Scholar 

  2. M. V. Kostenko (Ed.), High-Voltage Technique [in Russian] (Vysshaya Shkola, Moscow, 1973), 351 pp.

    Google Scholar 

  3. É. M. Bazelyan and A. Yu. Goryunov, Elektrichestvo, No. 11, pp. 27–33 (1986).

  4. A. É. Bazelyan and É. M. Bazelyan, Teplofiz. Vys. Temp. 32, 354 (1994).

    Google Scholar 

  5. A. V. Ivanovskii, Zh. Tekh. Fiz. 65(12), 48 (1995) [Tech. Phys. 40, 1230 (1995)].

    Google Scholar 

  6. É. M. Bazelyan and I. M. Razhanskii, Spark Discharge in Air [in Russian] (Nauka, Novosibirsk, 1988), 164 pp.

    Google Scholar 

  7. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, 2nd ed. [in Russian] (Fizmatgiz, Moscow, 1966), 686 pp.

    Google Scholar 

  8. N. L. Aleksandrov, A. M. Konchakov, and É. E. Son, Fiz. Plazmy 4, 169 (1978) [Sov. J. Plasma Phys. 4, 98 (1978)].

    Google Scholar 

  9. I. Shimamura, Sci. Pap. Inst. Phys. Chem. Res. (Jpn.) Vol. 82, pp. 1–51 (1989).

    Google Scholar 

  10. E. Gerjuoy and S. Stein, Phys. Rev. 97, 1671 (1955).

    Article  ADS  Google Scholar 

  11. E. Gerjuoy and S. Stein, Phys. Rev. 98, 1848 (1955).

    Article  ADS  Google Scholar 

  12. G. J. Schulz, Phys. Rev. 135, A988 (1964).

    Article  ADS  Google Scholar 

  13. W. L. Borst, Phys. Rev. A 5, 648 (1972).

    ADS  Google Scholar 

  14. P. N. Stanton and R. M. St. John, J. Opt. Soc. Am. 59, 252 (1969).

    Google Scholar 

  15. A. E. S. Green and R. S. Stolarski, J. Atmos. Terr. Phys. 34, 1703 (1972).

    Google Scholar 

  16. D. Rapp and P. Englander-Golden, J. Chem. Phys. 42, 4081 (1965).

    Article  Google Scholar 

  17. A. V. Eletskii and B. M. Smirnov, Usp. Fiz. Nauk 136, 254 (1982) [Sov. Phys. Usp. 25, 13 (1982)].

    Google Scholar 

  18. J. D. Lambert, Vibrational and Rotational Relaxation in Gases (Oxford, Clarendon Press, 1977).

    Google Scholar 

  19. V. S. Éngel’sht and B. A. Uryukov (Eds.), Low-Temperature Plasma. Theory of the Column of an Electric Arc [in Russian] (Nauka, Novosibirsk, 1990), 215 pp.

    Google Scholar 

  20. L. G. H. Huxley and R. W. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley, New York, 1974); Mir, Moscow, 1977, 672 pp.

    Google Scholar 

  21. B. Sherman, J. Math. Anal. Appl. 1, 342 (1960).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Additional information

Zh. Tekh. Fiz. 68, 37–44 (June 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanovskii, A.V. Steady-state leader breakdown. Nitrogen atmosphere. Tech. Phys. 43, 648–654 (1998). https://doi.org/10.1134/1.1259047

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1259047

Keywords

Navigation