Skip to main content
Log in

Features of the α-γ transition in a low-pressure rf argon discharge

  • Gas Discharges, Plasmas
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

It is found that the region for the stable existence of the aregime of a radio-frequency (rf) discharge is bounded not only on the moderate-pressure side, but also on the low-pressure side. One feature of the α-γ transition in a low-pressure rf discharge is that the criterion for breakdown of the electrode sheath is not satisfied. It is shown that at low pressures the α-γ transition of an rf argon discharge takes place abruptly and exhibits hysteresis. At intermediate pressures the α-γ transition is continuous and lacks jumps; negative differential conductivity appears, double layers form, and nonmonotonic behavior of the plasma density is observed at the center of the discharge. The role of stochastic (collisionless) electron heating in sustaining an rf discharge at intermediate gas pressures is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Flamm, V. M. Donnelley, and D. E. Ibbotson, J. Vac. Sci. Technol. 1, 23 (1983).

    Google Scholar 

  2. J. M. Coburn and E. Kay, IBM J. Res. Dev. 23, 33 (1979).

    Google Scholar 

  3. V. I. Myshenkov, and N. A. Yatsenko, Kvantovaya Élektron. (Moscow) 8, 2121 (1981) [Sov. J. Quantum Electron. 11, 1297 (1981)].

    Google Scholar 

  4. Y. P. Raizer, M. N. Shneider, and N. A. Yatsenko, Radio-Frequency Capacitive Discharges, CRC Press, Boca Raton (1995).

    Google Scholar 

  5. S. M. Levitskii, Zh. Tekh. Fiz. 27, 970 (1957) [Sov. Phys. Tech. Phys. 2, 887 (1957)].

    Google Scholar 

  6. N. A. Yatsenko, Zh. Tekh. Fiz. 50, 2480 (1980) [Sov. Phys. Tech. Phys. 25, 1454 (1980)]; Zh. Tekh. Fiz. 51, 1195 (1981) [Sov. Phys. Tech. Phys. 26, 678 (1981)]; Zh. Tekh. Fiz. 58, 294 (1988) [Sov. Phys. Tech. Phys. 33, 180 (1988)].

    Google Scholar 

  7. V. A. Godyak and A. S. Khanneh, IEEE Trans. Plasma Sci. PS-14, 112 (1986).

    Google Scholar 

  8. Yu. P. Raizer and M. N. Shneider, Fiz. Plazmy 13, 471 (1987) [Sov. J. Plasma Phys. 13, 267 (1987)]; Fiz. Plazmy 14, 226 (1988) [Sov. J. Plasma Phys. 14, 128 (1988)]; Fiz. Plazmy 18, 1476 (1992) [Sov. J. Plasma Phys. 18, 762 (1992)].

    Google Scholar 

  9. V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, IEEE Trans. Plasma Sci. PS-19, 660 (1991).

    Google Scholar 

  10. I. D. Kaganovich, L. D. Tsendin, and N. A. Yatsenko, Zh. Tekh. Fiz. 64(12), 25 (1994) [Tech. Phys. 39, 1215 (1994)].

    Google Scholar 

  11. P. Vidaud, S. M. A. Durrani, and D. K. Hall, J. Phys. D: Appl. Phys. 21, 57 (1988).

    Article  ADS  Google Scholar 

  12. T. Makabe, N. Nakano, and Y. Yamaguchi, Phys. Rev. A 45, 2520 (1992).

    Article  ADS  Google Scholar 

  13. C. Bohm and J. Perrin, J. Phys. D: Appl. Phys. 24, 865 (1991).

    Article  ADS  Google Scholar 

  14. P. P. Vitruk, H. J. Baker, and D. K. Hall, J. Phys. D: Appl. Phys. 25, 1767 (1992).

    Article  ADS  Google Scholar 

  15. Yu. P. Raizer, Gas Discharge Physics, Springer-Verlag, Berlin-New York (1991); Nauka, Moscow (1987), 592 pp.

    Google Scholar 

  16. N. Yu. Kropotov, V. A. Lisovskii, Yu. A. Kachanov et al., Pis’ma Zh. Tekh. Fiz. 15(21), 17 (1989) [Sov. Tech. Phys. Lett. 15, 836 (1989)].

    Google Scholar 

  17. V. A. Lisovskii, V. D. Egorenkov, and O. V. Krasnikov, Pis’ma Zh. Tekh. Fiz. 19(21), 90 (1993) [Sov. Tech. Phys. Lett. 19, 701 (1993)].

    Google Scholar 

  18. V. A. Lisovskii and O. V. Krasnikov, Pis’ma Zh. Tekh. Fiz. 21(22), 57 (1995) [Sov. Tech. Phys. Lett. 21, 931 (1995)].

    Google Scholar 

  19. V. A. Lisovskiy and O. V. Krasnikov, in 22nd IEEE International Conference on Plasma Science. Conference Record, Abstracts, Madison, Wisconsin (1995), p. 144.

    Google Scholar 

  20. V. A. Nemchinskii, Zh. Tekh. Fiz. 40, 416 (1970) [Sov. Phys. Tech. Phys. 15, 314 (1970)].

    Google Scholar 

  21. G. J. Schulz and S. C. Brown, Phys. Rev. 98, 1642 (1955).

    Article  ADS  Google Scholar 

  22. S. V. Dudin, in 23rd IEEE International Conference on Plasma Science. Conference Record, Abstracts, Boston (1996), p. 45.

  23. S. V. Dudin, Prib. Tekh. Éksp (4), 78 (1994).

  24. V. A. Godyak and A. Kh. Ganna, Fiz. Plazmy 6, 676 (1980) [Sov. J. Plasma Phys. 6, 372 (1980)].

    Google Scholar 

  25. O. A. Popov and V. A. Godyak, J. Appl. Phys. 57, 53 (1985).

    Article  ADS  Google Scholar 

  26. C. Beneking, J. Appl. Phys. 68, 4461 (1990).

    ADS  Google Scholar 

  27. F. Tochikudo, T. Kokubo, S. Kakuta et al., J. Phys. D: Appl. Phys. 23, 1184 (1990).

    ADS  Google Scholar 

  28. T. Kokubo, F. Tochikubo, and T. Makabe, Appl. Phys. Lett. 56, 818 (1990).

    Article  ADS  Google Scholar 

  29. S. Kakuta, T. Kitajima, Y. Okabe, and T. Makabe, Jpn. J. Appl. Phys. 33, 4335 (1990).

    Google Scholar 

  30. K. Terai, Y. Ohsone, T. Kaneda, and T. Kubota, in Proceedings of the 20th International Conference on Phenomena in Ionized Gases, Contributed Papers, Pisa (1991), pp. 1151–1152.

  31. T. J. Sommerer and M. J. Kushner, J. Appl. Phys. 71, 1654 (1992).

    Article  ADS  Google Scholar 

  32. V. A. Godyak, Fiz. Plazmy 2, 141 (1976) [Sov. J. Plasma Phys. 2, 78 (1976)].

    Google Scholar 

  33. B. P. Wood, M. A. Lieberman, and A. J. Lichtenberg, IEEE Trans. Plasma Sci. PS-23, 89 (1995).

    Google Scholar 

  34. I. D. Kaganovich and L. D. Tsendin, IEEE Trans. Plasma Sci. 20(2), 66, 86 (1992).

    ADS  Google Scholar 

  35. P. W. May, D. F. Klemperer, and D. Field, J. Appl. Phys. 73, 1634 (1993).

    Article  ADS  Google Scholar 

  36. A. V. Godyak and N. Sternberg, Phys. Rev. A 42, 2299 (1990).

    Article  ADS  Google Scholar 

  37. A. M. Budyanskii, Pis’ma Zh. Tekh. Fiz. 18(1), 17 (1992) [Sov. Tech. Phys. Lett. 18, 6 (1992)].

    Google Scholar 

  38. M. A. Lieberman, Philos. Trans. R. Soc. London, Ser. B 17, 338 (1989).

    Google Scholar 

  39. P. F. Knewstubb and A. W. Tickner, J. Chem. Phys. 36, 674 (1962).

    Google Scholar 

  40. R. L. Fitzwilson and L. M. Chanin, J. Appl. Phys. 44, 5337 (1973).

    Article  Google Scholar 

  41. F. J. Mehr and M. A. Biondi, Phys. Rev. 176, 322 (1968).

    Article  ADS  Google Scholar 

  42. V. L. Granovskii, Electric Current in a Gas (Steady-State Current) [in Russian], Nauka, Moscow (1971), 544 pp.

    Google Scholar 

  43. Yu. P. Raizer and M. N. Shneider, Teplofiz. Vys. Temp. 29, 1041 (1991) [High Temp. (USSR) 29, 833 (1991)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Tekh. Fiz. 68, 52–60 (May 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisovskii, V.A. Features of the α-γ transition in a low-pressure rf argon discharge. Tech. Phys. 43, 526–534 (1998). https://doi.org/10.1134/1.1259033

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1259033

Keywords

Navigation