Skip to main content
Log in

Solution of dispersion relations for planar waveguides in the case of complex roots

  • Radiophysics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A method for calculating the complex roots of a nonlinear equation is described whereby the solution of the problem is reduced to quadratures. Applications of the method to the investigation of dispersion relations for various open waveguide structures with a complex dielectric permittivity are discussed. The possibilities of the prismatic excitation of modes corresponding to the roots of the dispersion relations on different Riemann sheets are analyzed. Solutions are obtained for the inverse problems of reconstructing complex mode propagation constants and determining the parameters of films that guide waveguide and leaky modes. The solution is based on processing of the angular dependence of the reflection coefficient in a prismatic excitation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Talisa, IEEE Trans. Microwave Theory Tech. MTT-33, 967 (1985).

    ADS  Google Scholar 

  2. W. S. Borland, D. E. Zelman, C. Radens et al., IEEE J. Quantum Electron. QE-23, 1172 (1987).

    ADS  Google Scholar 

  3. C. Hulse and A. Knoeser, IEEE J. Quantum Electron. QE-28, 2682 (1992).

    Google Scholar 

  4. J. K. Shaw, A. K. Jordan, and W. R. Winfrey, J. Opt. Soc. Am. A 10, 1157 (1993).

    ADS  Google Scholar 

  5. F. A. Burton and S. A. Cassidy, J. Lightwave Technol. LT-8, 1843 (1990).

    ADS  Google Scholar 

  6. K. H. Schlereth and M. Tack, IEEE J. Quantum Electron. QE-26, 627 (1990).

    ADS  Google Scholar 

  7. A. A. Romanenko, A. B. Sotskii, and A. V. Khomchenko, IF ANB Preprint No. 649 [in Russian], (B. I. Stepanov Institute of Physics, Academy of Sciences of Belarus, Minsk (1991), 31 pp.

  8. M. A. Lavrent’ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variable [in Russian], Nauka, Moscow (1973), 736 pp.

    Google Scholar 

  9. V. V. Shevchenko, Differents. Uravn. 15, 2004 (1979).

    MATH  MathSciNet  Google Scholar 

  10. M. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1982) [Russian trans., Mir, Moscow (1984), 512 pp.].

    Google Scholar 

  11. R. Ulrich, J. Opt. Soc. Am. 60, 1337 (1970).

    Google Scholar 

  12. L. N. Deryugin, A. N. Marchuk, and V. E. Sotin, Izv. Vyssh. Uchebn. Zaved. Radioélektron. 13, 973 (1970).

    Google Scholar 

  13. B. P. Singh and P. N. Prasad, J. Opt. Soc. Am. B 5, 453 (1988).

    ADS  Google Scholar 

  14. A. K. Nikitin, A. A. Tishchenko, and A. I. Chernyai, Zarub. Radioélektron., No. 10, 14 (1990).

  15. F. Yang and J. R. Sambles, J. Opt. Soc. Am. B 10, 858 (1993).

    ADS  Google Scholar 

  16. F. Yang, J. R. Sambles, and G. B. Bradberry, J. Appl. Phys. 78, 2187 (1995).

    ADS  Google Scholar 

  17. A. B. Sotskii, A. V. Khomchenko, and L. I. Sotskaya, Opt. Spektrosk. 78, 502 (1995) [Opt. Spectrosc. 78, 453 (1995)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Tekh. Fiz. 68, 88–95 (April 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanenko, A.A., Sotskii, A.B. Solution of dispersion relations for planar waveguides in the case of complex roots. Tech. Phys. 43, 427–433 (1998). https://doi.org/10.1134/1.1258999

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1258999

Keywords

Navigation