Skip to main content
Log in

Lagrange formalism for particles moving in a space of fractal dimension

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Analogs of the Lagrange equation for particles evolving in a space of fractal dimension are obtained. Two cases are considered: 1) when the space is formed by a set of material points (a so-called fractal continuum), and 2) when the space is a true fractal. In the latter case the fractional integrodifferential formalism is utilized, and a new principle for devising a fractal theory, viz., a generalized principle of least action, is proposed and used to obtain the corresponding Lagrange equation. The Lagrangians for a free particle and a closed system of interacting particles moving in a fractal continuum are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions, Pergamon Press, Oxford (1979) [Russian original, Nauka, Moscow (1982), 382 pp.].

    Google Scholar 

  2. Shang-Keng Ma, Modern Theory of Critical Phenomena, W. A. Benjamin, Reading, Mass. (1976) [Russian translation, Mir, Moscow (1980), 298 pp.].

    Google Scholar 

  3. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Chur-Philadelphia (1993) [Russian original, Nauka i Tekhnika, Minsk (1987), 687 pp.].

    Google Scholar 

  4. A. E. Dubinov (ed.), Fractals in Applied Physics [in Russian], All-Russia Scientific-Research Institute of Experimental Physics, Arzamas-16 (1995), 216 pp.

    Google Scholar 

  5. A. I. Olemskoi and A. Ya. Flat, Usp. Fiz. Nauk 163(12), 1 (1993) [Phys. Usp. 36, 1087 (1993)].

    Google Scholar 

  6. L. Notale and I. Schnelder, J. Math. Phys. 25, 1296 (1994).

    ADS  Google Scholar 

  7. B. M. Smirnov, Physics of Fractal Clusters [in Russian], Nauka, Moscow (1991), 133 pp.

    Google Scholar 

  8. Ya. B. Zel’dovich and D. D. Sokolov, Usp. Fiz. Nauk 146, 493 (1985) [Sov. Phys. Usp. 28, 608 (1985)].

    MathSciNet  Google Scholar 

  9. L. D. Landau and E. M. Lifshitz, Mechanics, 3rd ed., Pergamon Press, Oxford (1976) [Russian original, Nauka, Moscow (1988), 216 pp.].

    Google Scholar 

  10. H. Goldstein, Classical Mechanics, Addison-Wesley Press, Cambridge, Mass. (1950) [Russian trans., Nauka, Moscow (1975), 416 pp.].

    Google Scholar 

  11. T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of twodimensional systems,” Rev. Mod. Phys. 54, 437–672 (1982) [Russian trans., Mir, Moscow (1985), 416 pp.].

    Article  ADS  Google Scholar 

  12. I. P. Guk, in Material Science and Material Properties for Infrared Optoelectronics, 30 September–2 October 1966, Uzhgorod, Ukraine, SPIE, Bellingham, Washington (1996), p. 78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Tekh. Fiz. 68, 7–11 (February 1990)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guk, I.P. Lagrange formalism for particles moving in a space of fractal dimension. Tech. Phys. 43, 353–357 (1998). https://doi.org/10.1134/1.1258985

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1258985

Keywords

Navigation