Skip to main content
Log in

Microwave noise of a thin-film YBa2Cu3O7−x bridge in the resistive state

  • Radiophysics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The effective input noise temperature T e of a bridge made from a highly oriented YBaCuO film is measured at a frequency of 4.6 GHz. The bridge is brought to a weakly resistive state by a dc current, by microwave radiation at a frequency of 9.4 GHz, or by a combination of the two. Along with the noise temperature, the current-voltage characteristics and impedance of the bridge are also measured at a frequency of 4.6 GHz. At T=78 K the value of T e does not exceed 120 K. Analysis of the results allows one to compare the experimental values of T e with the values determined by the equilibrium Nyquist noise of overheated normal domains and indicates the presence of excess noise at a level comparable to the Nyquist noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.-L. Cao, Y.-Q. Liu et al., IEEE Trans. Appl. Supercond. AS-3, 2848 (1993).

    ADS  Google Scholar 

  2. Y. Nagai, D. F. Hebert, T. Van Duzer et al., Appl. Phys. Lett. 63, 830 (1993).

    Article  ADS  Google Scholar 

  3. M. M. Gaidukov, A. B. Kozyrev, V. N. Osadchii, and V. F. Vratskikh, Pis’ma Zh. Tekh. Fiz. 20(18), 86 (1994) [Tech. Phys. Lett. 20, 761 (1994)].

    Google Scholar 

  4. M. M. Gaidukov, O. G. Vendik, S. G. Kolesov et al., Electron. Lett. 26, 1229 (1990).

    Google Scholar 

  5. V. N. Keis, A. B. Kozyrev, N. B. Samoilova, and O. G. Vendik, Electron. Lett. 29, 546 (1993).

    ADS  Google Scholar 

  6. A. B. Kozyrev, T. B. Samoilov, and S. Yu. Shaferova, Sverkhprovod. KIAE 6, 1823 (1993).

    Google Scholar 

  7. P. Langlois, D. Robbes et al., J. Appl. Phys. 76, 3858 (1994).

    Article  ADS  Google Scholar 

  8. A. A. Konstantinian, R. B. Hayrapetian, and R. M. Martirossian, Physica B 173, 313 (1991).

    ADS  Google Scholar 

  9. J. Konopka, R. Sobolewski, G. Jung et al., IEEE Trans. Microwave Theory Tech. MTT-38, 160 (1990).

    Google Scholar 

  10. G. Jung and J. Konopka, Europhys. Lett. 10, 183 (1989).

    ADS  Google Scholar 

  11. R. C. Lacoe, P. Hurell, K. Springer et al., IEEE Trans. Magn. MAG-27, 2832 (1991).

    ADS  Google Scholar 

  12. J. H. Lee, S. C. Lee, and Z. G. Khim, Phys. Rev. B 40, 6806 (1989).

    ADS  Google Scholar 

  13. H. Ekstrom, B. Karasik, E. Kollberg et al., IEEE Microwave Theory Tech., Special Space Terahertz Issue (1995).

  14. Yu. M. Ivanchenko and P. N. Mikheenko, Zh. Éksp. Teor. Fiz. 82, 488 (1982) [Sov. Phys. JETP 55, 281 (1982)].

    Google Scholar 

  15. I. G. Kozhevnikov and L. A. Novitskii, Thermophysical Properties of Materials at Low Temperatures [in Russian], Mashinostroenie, Moscow (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Tekh. Fiz. 67, 89–93 (February 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vendik, O.G., Keis, V.N., Kozyrev, A.B. et al. Microwave noise of a thin-film YBa2Cu3O7−x bridge in the resistive state. Tech. Phys. 42, 202–205 (1997). https://doi.org/10.1134/1.1258624

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1258624

Keywords

Navigation