Skip to main content
Log in

Drag current for ionization of impurities by an electromagnetic wave in a semiconductor superlattice

  • Semiconductors Structures, Interface, and Surfaces
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The drag current for ionization of a shallow impurity by a strong electromagnetic wave in a semiconductor superlattice is found. It is shown that at low temperatures, when it is possible to ignore the equilibrium carrier density, the dependence of the drag current on the intensity of the electromagnetic wave is nonlinear and it oscillates with growth of the intensity of the electromagnetic field. These oscillations are a consequence of the many-photon character of absorption of the electromagnetic wave by the impurities and also of nonparabolicity of the energy spectrum of the superlattice. A comparison is made of the contributions to the drag current from the anisotropic part of the impurity ionization probability and from its isotropic part, with allowance for modification of the distribution function by the electromagnetic wave. It is found that for

(Δ is the width of the conduction miniband) the main contribution to the drag current comes from the isotropic part of the ionization probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Referneces

  1. A. A. Ignatov, Fiz. Tverd. Tela (Leningrad) 22(11), 3319 (1980) [Sov. Phys. Solid State 22, 1942 (1980)].

    Google Scholar 

  2. É. M. Épshtein, Fiz. Tekh. Poluprovodn. 14(12), 2422 (1980) [Sov. Phys. Semicond. 14, 1438 (1980)].

    Google Scholar 

  3. É. M. Épshtein, Izv. Vuzov. Radiofizika 24(4), 514 (1981).

    Google Scholar 

  4. É. M. Épshtein, Fiz. Tekh. Poluprovodn. 16(12), 2231 (1982) [Sov. Phys. Semicond. 16, 1445 (1982)].

    Google Scholar 

  5. N. A. Brynskii and S. A. Sagdullaeva, Fiz. Tekh. Poluprovodn. 12(4), 798 (1978) [Sov. Phys. Semicond. 12, 467 (1978)].

    Google Scholar 

  6. S. D. Ganichev, S. A. Emel’yanov, E. L. Ivchenko, E. Yu. Perlin, Ya. V. Terent’ev, A. V. Fedorov, and I. D. Yaroshetskii, Zh. Éksp. Teor. Fiz. 91(4), 1233 (1986) [Sov. Phys. JETP 64, 729 (1986)].

    Google Scholar 

  7. R. Ya. Rasulov, Fiz. Tekh. Poluprovodn. 22(11), 2077 (1988) [Sov. Phys. Semicond. 22, 1316 (1988)].

    Google Scholar 

  8. S. V. Kryuchkov, Fiz. Tekh. Poluprovodn. 25(4), 740 (1991) [Sov. Phys. Semicond. 25, 446 (1991)].

    Google Scholar 

  9. F. G. Bass, A. A. Bulgakov, and A. P. Tetervov, High-Frequency Properties of Semiconductors with Superlattices [in Russian], Nauka, Moscow, 1989.

    Google Scholar 

  10. N. B. Delone and V. P. Krainov, Usp. Fiz. Nauk 165(11), 1295 (1995) [Phys. Usp. 36, 805 (1995)].

    Google Scholar 

  11. M. V. Fedorov, Usp. Fiz. Nauk 169(1), 66 (1999).

    Google Scholar 

  12. K. Seeger, Semiconductor Physics (Springer-Verlag, Berlin, 1974).

    Google Scholar 

  13. L. V. Keldysh, Zh. Éksp. Teor. Fiz. 47(5), 1945 (1964) [Sov. Phys. JETP 20, 1307 (1964)].

    Google Scholar 

  14. M. V. Fedorov, Electron in a Strong Light Field [in Russian], Nauka, Moscow, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tekh. Poluprovodn. 33, 1443–1446 (December 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vyazovskii, M.V., Syrodoev, G.A. Drag current for ionization of impurities by an electromagnetic wave in a semiconductor superlattice. Semiconductors 33, 1297–1300 (1999). https://doi.org/10.1134/1.1187911

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1187911

Keywords

Navigation