, Volume 33, Issue 12, pp 1297–1300 | Cite as

Drag current for ionization of impurities by an electromagnetic wave in a semiconductor superlattice

  • M. V. Vyazovskii
  • G. A. Syrodoev
Semiconductors Structures, Interface, and Surfaces


The drag current for ionization of a shallow impurity by a strong electromagnetic wave in a semiconductor superlattice is found. It is shown that at low temperatures, when it is possible to ignore the equilibrium carrier density, the dependence of the drag current on the intensity of the electromagnetic wave is nonlinear and it oscillates with growth of the intensity of the electromagnetic field. These oscillations are a consequence of the many-photon character of absorption of the electromagnetic wave by the impurities and also of nonparabolicity of the energy spectrum of the superlattice. A comparison is made of the contributions to the drag current from the anisotropic part of the impurity ionization probability and from its isotropic part, with allowance for modification of the distribution function by the electromagnetic wave. It is found that for
(Δ is the width of the conduction miniband) the main contribution to the drag current comes from the isotropic part of the ionization probability.


Magnetic Material Electromagnetic Wave Electromagnetism Semiconductor Superlattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Ignatov, Fiz. Tverd. Tela (Leningrad) 22(11), 3319 (1980) [Sov. Phys. Solid State 22, 1942 (1980)].Google Scholar
  2. 2.
    É. M. Épshtein, Fiz. Tekh. Poluprovodn. 14(12), 2422 (1980) [Sov. Phys. Semicond. 14, 1438 (1980)].Google Scholar
  3. 3.
    É. M. Épshtein, Izv. Vuzov. Radiofizika 24(4), 514 (1981).Google Scholar
  4. 4.
    É. M. Épshtein, Fiz. Tekh. Poluprovodn. 16(12), 2231 (1982) [Sov. Phys. Semicond. 16, 1445 (1982)].Google Scholar
  5. 5.
    N. A. Brynskii and S. A. Sagdullaeva, Fiz. Tekh. Poluprovodn. 12(4), 798 (1978) [Sov. Phys. Semicond. 12, 467 (1978)].Google Scholar
  6. 6.
    S. D. Ganichev, S. A. Emel’yanov, E. L. Ivchenko, E. Yu. Perlin, Ya. V. Terent’ev, A. V. Fedorov, and I. D. Yaroshetskii, Zh. Éksp. Teor. Fiz. 91(4), 1233 (1986) [Sov. Phys. JETP 64, 729 (1986)].Google Scholar
  7. 7.
    R. Ya. Rasulov, Fiz. Tekh. Poluprovodn. 22(11), 2077 (1988) [Sov. Phys. Semicond. 22, 1316 (1988)].Google Scholar
  8. 8.
    S. V. Kryuchkov, Fiz. Tekh. Poluprovodn. 25(4), 740 (1991) [Sov. Phys. Semicond. 25, 446 (1991)].Google Scholar
  9. 9.
    F. G. Bass, A. A. Bulgakov, and A. P. Tetervov, High-Frequency Properties of Semiconductors with Superlattices [in Russian], Nauka, Moscow, 1989.Google Scholar
  10. 10.
    N. B. Delone and V. P. Krainov, Usp. Fiz. Nauk 165(11), 1295 (1995) [Phys. Usp. 36, 805 (1995)].Google Scholar
  11. 11.
    M. V. Fedorov, Usp. Fiz. Nauk 169(1), 66 (1999).Google Scholar
  12. 12.
    K. Seeger, Semiconductor Physics (Springer-Verlag, Berlin, 1974).Google Scholar
  13. 13.
    L. V. Keldysh, Zh. Éksp. Teor. Fiz. 47(5), 1945 (1964) [Sov. Phys. JETP 20, 1307 (1964)].Google Scholar
  14. 14.
    M. V. Fedorov, Electron in a Strong Light Field [in Russian], Nauka, Moscow, 1991.Google Scholar

Copyright information

© American Institute of Physics 1999

Authors and Affiliations

  • M. V. Vyazovskii
    • 1
  • G. A. Syrodoev
    • 1
  1. 1.Volgograd State Pedagogical UniversityVolgogradRussia

Personalised recommendations