Skip to main content
Log in

Hysteresis phenomena in the course of polarization evolution in a sinusoidal electric field in lead magnesium niobate crystals

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The processes of polarization evolution in single crystals of the PbMg1/3Nb2/3O3 model ferroelectric relaxor in a sinusoidal electric field are investigated at temperatures near and above the temperature T d 0 of destruction of the induced ferroelectric state upon heating in zero electric field. The polarization switching current loops are measured in the ac electric field applied along the 〈111〉 and 〈110〉 pseudocubic directions. The electroluminescence intensity loops are obtained under the combined action of ac and dc electric fields applied along the 〈100〉 direction. In a certain temperature range above T d 0 and the freezing temperature T f in lead magnesium niobate, there are electric current anomalies, that correspond to the dynamic formation and subsequent destruction of the ferroelectric macroregions throughout each half-cycle of the ac electric field. The measurements of electroluminescence hysteresis loops demonstrate that the observed depolarization delay (related to the ac electric field amplitude) increases with an increase in the dc electric field and decreases as the ac field amplitude increases. The nature of the observed phenomena is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Smolenskii, V. A. Isupov, and A. I. Agranovskaya, Fiz. Tverd. Tela (Leningrad) 1, 170 (1959) [Sov. Phys. Solid State 1 (1959)].

    Google Scholar 

  2. D. Viehland, S. J. Jang, L. E. Cross, et al., J. Appl. Phys. 68, 2916 (1990).

    Article  ADS  Google Scholar 

  3. E. V. Colla, S. B. Vakhrushev, E. Yu. Koroleva, et al., Fiz. Tverd. Tela (S.-Peterburg) 38, 2183 (1996) [Phys. Solid State 38, 1202 (1996)].

    Google Scholar 

  4. L. A. Markova, N. N. Krainik, and R. N. Kyutt, Fiz. Tverd. Tela (Leningrad) 33, 35 (1991) [Sov. Phys. Solid State 33, 18 (1991)].

    Google Scholar 

  5. M. D. Glinchuk, R. Farhi, and V. A. Stephanovich, Ferroelectrics 199, 11 (1997).

    Google Scholar 

  6. W. Kleemann and R. Lindner, Ferroelectrics 199, 1 (1997).

    Google Scholar 

  7. A. K. Tagantsev and A. E. Glazounov, Appl. Phys. Lett. 74, 1910 (1999).

    ADS  Google Scholar 

  8. G. Calvarin, E. Husson, and Z. G. Ye, Ferroelectrics 165, 349 (1995).

    Google Scholar 

  9. G. A. Smolenskii, N. N. Krainik, L. A. Kuznetsova, et al., Fiz. Tverd. Tela (Leningrad) 23, 1341 (1981) [Sov. Phys. Solid State 23, 784 (1981)].

    Google Scholar 

  10. G. Schmidt, H. Arndt, G. Borchardt, et al., Phys. Status Solidi A 63, 501 (1981).

    Google Scholar 

  11. A. K. Tagantsev and A. E. Glazounov, Phys. Rev. B 57, 18 (1998).

    Article  ADS  Google Scholar 

  12. N. N. Krainik, L. S. Kamzina, and S. A. Flerova, Ferroelectrics 208–209, 363 (1998).

    Google Scholar 

  13. I. E. Myl’nikova and V. A. Bokov, in Growth of Crystals (Akad. Nauk. SSSR, Moscow, 1961), Vol. 3, p. 438.

    Google Scholar 

  14. N. N. Krainik and L. S. Kamzina, Fiz. Tverd. Tela (S.-Peterburg) 37, 999 (1995) [Phys. Solid State 37, 542 (1995)].

    Google Scholar 

  15. A. S. Sidorkin, B. M. Darinskii, and T. N. Pankova, Izv. Akad. Nauk SSSR, Ser. Fiz. 48, 1135 (1984).

    Google Scholar 

  16. S. A. Flerova, N. N. Krainik, and A. Yu. Kudzin, Ferroelectrics 90, 135 (1989).

    Google Scholar 

  17. E. O. Bochkov, N. N. Krainik, A. Yu. Kudzin, et al., Izv. Akad. Nauk, Ser. Fiz. 57, 36 (1993).

    Google Scholar 

  18. E. V. Colla, E. Yu. Koroleva, N. M. Okuneva, et al., Phys. Rev. Lett. 74, 1681 (1995).

    Article  ADS  Google Scholar 

  19. Z. G. Ye and H. Schmidt, Ferroelectrics 145, 83 (1993).

    Google Scholar 

  20. S. B. Vakhrushev, B. E. Kvjatkovsky, A. A. Nabereznov, et al., Physica B (Amsterdam) 156–157, 90 (1989).

    Google Scholar 

  21. A. E. Glazounov and A. K. Tagantsev, Appl. Phys. Lett. 73, 856 (1998).

    Article  ADS  Google Scholar 

  22. A. Levstik, Z. Kutnjak, C. Filipic, et al., Phys. Rev. B: Condens. Matter 57, 11204 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 42, No. 5, 2000, pp. 917–921.

Original Russian Text Copyright © 2000 by Kra\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\)nik, Kamzina, Flerova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krainik, N.N., Kamzina, L.S. & Flerova, S.A. Hysteresis phenomena in the course of polarization evolution in a sinusoidal electric field in lead magnesium niobate crystals. Phys. Solid State 42, 944–949 (2000). https://doi.org/10.1134/1.1131316

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1131316

Keywords

Navigation