Skip to main content
Log in

Dielectric and electromechanical properties of (1−x)PMN-xPZT ferroelectric ceramics

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The dielectric and electromechanical characteristics of the (1−x)PMN-xPZT ferroelectric ceramics have been obtained at different temperatures, amplitudes, and frequencies of the measuring field and at different bias field strengths. It is shown that this ferroelectric ceramics at low and infralow frequencies possesses pronounced relaxor properties in a certain temperature range and ferroelectric properties in other temperature range. The temperature and amplitude ranges have been determined, in which the permittivity ɛ′ either only decreases or first increases and then decreases with an increase in the measuring field amplitude E 0. The temperature ranges of existing the phases similar to the superparaelectric phase, dipole glass phase, and ferroelectric phase are evaluated from the temperature dependences of the coercive field E c (T) and the remanent polarization P r (T) and also from the reverse dependences of ɛ* and the electromechanical characteristics. The PZT concentration in the PMN-PZT system is determined, at which the electrostrictive constant M 11 is maximum. It is demonstrated that, in the neighborhood of the temperature at a maximum of ɛ′, the strain S 3 is quadratic in the field E =; that is, S 3=M 11 E 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Cross, Ferroelectrics 76, 241 (1987).

    Google Scholar 

  2. G. A. Rossetti, T. Nishimura, and L. E. Cross, J. Appl. Phys. 70, 1630 (1991).

    Article  ADS  Google Scholar 

  3. Z.-G. Ye and H. Schmid, Ferroelectrics 145, 83 (1993).

    Google Scholar 

  4. W. Pan, F. Furmann, G. O. Daytan, et al., J. Mater. Sci. Lett. 5, 647 (1986).

    Article  Google Scholar 

  5. A. V. Shil’nikov, A. I. Burkhanov, and E. Kh. Birks, Fiz. Tverd. Tela (Leningrad) 29, 809 (1987) [Sov. Phys. Solid State 29, 520 (1987)].

    Google Scholar 

  6. A. V. Shil’nikov, A. I. Burkhanov, E. H. Birks, et al., Ferroelectrics 81, 317 (1988).

    Google Scholar 

  7. D. Viehland, S. J. Jang, L. E. Cross, et al., Phys. Rev. B 46, 8003 (1992).

    ADS  Google Scholar 

  8. M. D. Glinchuk, R. Farhi, and V. A. Stephanovich, Ferroelectrics 199, 11 (1997).

    Google Scholar 

  9. V. A. Isupov, Fiz. Tverd. Tela (S.-Peterburg) 38, 1326 (1996) [Phys. Solid State 38, 734 (1996)].

    Google Scholar 

  10. V. A. Isupov, Phys. Status Solidi B 213, 211 (1999).

    Google Scholar 

  11. A. E. Glazounov, A. K. Tagantsev, and A. J. Bell, Phys. Rev. B 53, 11281 (1996).

    Google Scholar 

  12. A. K. Tagantsev and A. E. Glazounov, Phys. Rev. B 57, 18 (1998).

    Article  ADS  Google Scholar 

  13. A. K. Tagantsev and A. E. Glazounov, J. Korean Phys. Soc. 32, S951 (1998).

    Google Scholar 

  14. A. B. Shil’nikov, N. M. Galiyarova, S. V. Gorin, et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 578 (1991).

    Google Scholar 

  15. M. Yoshida, S. Mori, N. Yanamoto, et al., J. Korean Phys. Soc. 32, S993 (1998).

    Google Scholar 

  16. I. Heike and W. William, J. Appl. Phys. 76, 1789 (1994).

    Google Scholar 

  17. L. A. Kuznetsova, L. S. Kamzina, and N. N. Krainik, in Proceedings of the 1981 USSR Academy of Sciences (Physicotechnical Institute, Leningrad, 1981), p. 103.

    Google Scholar 

  18. E. Yu. Koroleva, Candidate’s Dissertation in Mathematical Physics (St. Petersburg, 1998).

  19. S. B. Vakhrushev, Doctoral Dissertation in Mathematical Physics (St. Petersburg, 1998).

  20. E. G. Nadolinskaya, N. N. Krainik, A. V. Shil’nikov, et al., Fiz. Tverd. Tela (Leningrad) 30, 149 (1988) [Sov. Phys. Solid State 30, 82 (1988)].

    Google Scholar 

  21. A. V. Shil’nikov, A. V. Sopit, A. I. Burkhanov, et al., J. Eur. Ceram. Soc. 19, 1295 (1999).

    Google Scholar 

  22. AS TM-D 150-70. Methods for Determination of Dielectric Constants and Dielectric Losses of Solid Electroinsulating Materials at an Alternating Current: US Standards (Moscow, 1979), p. 108.

  23. A. G. Luchaninov, A. V. Vladimtsev, B. N. Chernykh, et al., Prib. Tekh. Éksp., No. 1, 213 (1990).

  24. Yu. M. Poplavko, Physics of Dielectrics (Vishcha Shkola, Kiev, 1980).

    Google Scholar 

  25. A. V. Sopit, A. I. Burkhanov, A. V. Shil’nikov, et al., in Proceedings of International Conference on Phase Transitions and Critical Phenomena in Condensed Matters, Makhachkala, Dagestan, Russia, 1999 (Inst. of Physics, Dagestan Scientific Center, Russian Academy of Sciences, Makhachkala, 1999), p. 251.

    Google Scholar 

  26. A. V. Shil’nikov, Izv. Akad. Nauk SSSR, Ser. Fiz. 51, 1726 (1987).

    Google Scholar 

  27. A. V. Shil’nikov, V. N. Nesterov, and A. I. Burkhanov, Ferroelectrics 175(14) (1995).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 42, No. 5, 2000, pp. 910–916.

Original Russian Text Copyright © 2000 by Burkhanov, Shil’nikov, Sopit, Luchaninov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkhanov, A.I., Shil’nikov, A.V., Sopit, A.V. et al. Dielectric and electromechanical properties of (1−x)PMN-xPZT ferroelectric ceramics. Phys. Solid State 42, 936–943 (2000). https://doi.org/10.1134/1.1131315

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1131315

Keywords

Navigation