Skip to main content
Log in

Polarization interaction and phase transitions in crystals with two interacting subsystems

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The influence of the polarization interactions on the state and phase transitions in magnetic-ordered and dielectric crystals with two interacting order parameters has been investigated. Consideration is given to the case when the interaction in one of the subsystems is considerably weaker than that in the other subsystem. It is demonstrated that the polarization interactions in the weak subsystem can substantially affect the state and the character of phase transitions in the strong subsystem. These interactions can bring about the disordering (formation of the random-field state or the state of spin glass) in the critical region near the second-order phase transition in the main subsystem and also the smearing of the phase transition. At the same time, the polarization interactions can give rise to the ordered and disordered states in the weak subsystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Appel, Solid State Phys. 21, 193 (1968).

    Google Scholar 

  2. B. A. Strukov and A. P. Levanyuk, Physical Principles of Ferroelectric Crystals (Nauka, Moscow, 1983).

    Google Scholar 

  3. A. K. Zvezdin, V. M. Matveev, A. A. Mukhin, and A. I. Popov, Rare-Earth Ions in Magnetically Ordered Crystals (Nauka, Moscow, 1985).

    Google Scholar 

  4. S. L. Ginzburg, Irreversible Phenomena in Spin Glasses (Nauka, Moscow, 1989).

    Google Scholar 

  5. M. A. Ivanov and E. F. Shender, Zh. Éksp. Teor. Fiz. 69, 350 (1975) [Sov. Phys. JETP 42, 179 (1975)].

    Google Scholar 

  6. E. I. Golovenchits, B. D. Laikhtman, and V. A. Sanina, Pis’ma Zh. Éksp. Teor. Fiz. 31, 243 (1980) [JETP Lett. 31, 223 (1980)].

    Google Scholar 

  7. E. F. Shender, Zh. Éksp. Teor. Fiz. 83, 326 (1982) [Sov. Phys. JETP 56, 178 (1982)].

    Google Scholar 

  8. E. I. Golovenchits and V. A. Sanina, Fiz. Tverd. Tela (Leningrad) 26, 1640 (1984) [Sov. Phys. Solid State 26, 996 (1984)].

    Google Scholar 

  9. E. I. Golovenchits, V. A. Sanina, and T. A. Shaplygina, Zh. Éksp. Teor. Fiz. 80, 1911 (1981) [Sov. Phys. JETP 53, 992 (1981)].

    Google Scholar 

  10. Y. Imry and S. Ma, Phys. Rev. Lett. 35, 1399 (1975).

    Article  ADS  Google Scholar 

  11. A. V. Babinskii, S. L. Ginzburg, E. I. Golovenchits, et al., Pis’ma Zh. Éksp. Teor. Fiz. 57, 289 (1993) [JETP Lett. 57, 299 (1993)].

    Google Scholar 

  12. E. I. Golovenchits, V. A. Sanina, and A. V. Babinskii, Zh. Éksp. Teor. Fiz. 110, 714 (1996) [JETP 63, 674 (1996)].

    Google Scholar 

  13. E. I. Golovenchits and V. A. Sanina, Fiz. Tverd. Tela (S.-Peterburg) 41, 1437 (1999) [Phys. Solid State 41, 1315 (1999)].

    Google Scholar 

  14. E. I. Golovenchits and V. A. Sanina, Fiz. Tverd. Tela (S.-Peterburg) 41, 1259 (1999) [Phys. Solid State 41, 1149 (1999)].

    Google Scholar 

  15. E. I. Golovenchits, V. A. Sanina, and G. A. Smolenskii, Pis’ma Zh. Éksp. Teor. Fiz. 40, 110 (1984) [JETP Lett. 40, 857 (1984)].

    Google Scholar 

  16. E. I. Golovenchits, V. A. Sanina, A. A. Levin, et al., Fiz. Tverd. Tela (Leningrad) 29, 3553 (1987) [Sov. Phys. Solid State 29, 2036 (1987)].

    Google Scholar 

  17. I. B. Bersuker, The Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry (Nauka, Moscow, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 42, No. 5, 2000, pp. 905–909.

Original Russian Text Copyright © 2000 by Sanina, Golovenchits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanina, V.A., Golovenchits, E.I. Polarization interaction and phase transitions in crystals with two interacting subsystems. Phys. Solid State 42, 931–935 (2000). https://doi.org/10.1134/1.1131314

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1131314

Keywords

Navigation