Skip to main content
Log in

The effect of surface roughness of a solid substrate on its wetting by a smectic-A structure in the nematic phase of a liquid crystal

  • Polymers. Liquid Crystals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of regular wavy microrelief of a substrate surface on the formation of a smectic-A (SmA) surface structure in a nematic liquid crystal (NLC) near the nematic-smectic-A second-order phase transition temperature has been investigated theoretically. Within the framework of the Ginzburg-Landau model we have obtained the dependence of the surface smectic-order parameter and the penetration depth of a SmA surface structure into the NLC on the amplitude and period of the substrate microrelief. The effect of surface roughness on wetting by a SmA structure in the nematic phase of the liquid crystal is investigated. It is shown that the wetting of a rough surface by the smectic phase is always incomplete. It is also shown that sufficiently sharp microrelief of a substrate surface can suppress the SmA surface structure almost completely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Blinov, E. I. Kats, and A. A. Sonin, Usp. Fiz. Nauk 152, 449 (1987) [Sov. Phys. Usp. 30, 604 (1987).

    Google Scholar 

  2. B. Jerome, Rep. Prog. Phys. 54,3, 391 (1991).

    Article  ADS  Google Scholar 

  3. H. Mada and S. Kobayashi, Appl. Phys. Lett. 35,1, 4 (1979).

    Article  ADS  Google Scholar 

  4. H. Mada and S. Kobayashi, Mol. Cryst. Liq. Cryst. 66,1, 57 (1981).

    Google Scholar 

  5. H. A. van Sprang, Mol. Cryst. Liq. Cryst. 97,1, 255 (1983).

    Google Scholar 

  6. I. A. Kleinman and I. E. Tomashevskii, Kristallografiya 29, 1214 (1984) [Sov. Phys. Crystallogr., (1984)].

    Google Scholar 

  7. J. P. Nicholson, J. Phys. (Paris) 49,12, 2111 (1988).

    Google Scholar 

  8. W. Chen, L. J. Martinez-Miranda, H. Hsiung, and Y. R. Shen, Phys. Rev. Lett. 62, 1860 (1989).

    ADS  Google Scholar 

  9. K. Miyano, J. Chem. Phys. 71, 4108 (1979).

    Article  ADS  Google Scholar 

  10. J. C. Tarczon and K. Miyano, J. Chem. Phys. 73, 1994 (1980).

    Article  ADS  Google Scholar 

  11. H. Yokoyama, S. Kobayashi, and H. Kamei, Appl. Phys. Lett. 41, 438 (1982).

    Article  ADS  Google Scholar 

  12. D. Beaglehole, Mol. Cryst. Liq. Cryst. 89,2, 319 (1982).

    Google Scholar 

  13. P. De Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993; Mir, Moscow, 1977) 400 pp.

    Google Scholar 

  14. J. Als-Nielsen, F. Chrstensen, and P. S. Pershan, Phys. Rev. Lett. 48, 1107 (1982).

    Article  ADS  Google Scholar 

  15. P. S. Pershan and J. Als-Nielsen, Phys. Rev. Lett. 52, 759 (1984).

    Article  ADS  Google Scholar 

  16. C. Rosenblatt, Phys. Rev. Lett. 53, 791 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Als-Nielsen, Physica A 140, 376 (1986).

    Article  ADS  Google Scholar 

  18. P. S. Pershan, A. Braslau, A. H. Weiss, and J. Als-Nielsen, Phys. Rev. A 35, 4800 (1987).

    Article  ADS  Google Scholar 

  19. B. M. Ocko, A. Braslau, P. S. Pershan, J. Als-Nielsen, and M. Deutsch, Phys. Rev. Lett. 57, 94 (1986).

    ADS  Google Scholar 

  20. P. S. Pershan, J. Phys. (Paris) 50, Coll. 7, 1 (1989).

    Google Scholar 

  21. B. M. Ocko, Phys. Rev. Lett. 64, 2160 (1990).

    Article  ADS  Google Scholar 

  22. J. V. Selinger and D. R. Nelson, Phys. Rev. A 37, 1736 (1988).

    Article  ADS  Google Scholar 

  23. Z. Pawlowska, G. F. Kventsel, and T. J. Sluckin, Phys. Rev. A 38, 5342 (1988).

    Article  ADS  Google Scholar 

  24. L. Mederos and D. E. Sullivan, Phys. Rev. A 46, 7700 (1992).

    Article  ADS  Google Scholar 

  25. A. M. Somoza, L. Mederos, and D. E. Sullivan, Phys. Rev. Lett. 72, 3674 (1994).

    Article  ADS  Google Scholar 

  26. Zh. Kon’yar, Orientation of Nematic Liquid Crystals and Their Mixtures [in Russian] (Belorussian State Univ. Press, Minsk, 1986), p. 101.

    Google Scholar 

  27. H. V. Kanel, J. D. Leister, J. Melngalis, and H. I. Smith, Phys. Rev. A 24, 2713 (1981).

    ADS  Google Scholar 

  28. G. Barbero, Nuovo Cimento Lett. 29,17, 553 (1980).

    Google Scholar 

  29. A. Suiamura and T. Kawamura, Jpn. J. Appl. Phys. 23,2, 137 (1984).

    Google Scholar 

  30. G. Barbero and G. Durand, J. Phys. (Paris) II 1,6, 651 (1991).

    Google Scholar 

  31. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, Cambridge, 1977; Mir, Moscow, 1980) 344 pp.

    Google Scholar 

  32. J. D. Litster, J. Als-Nielsen, R. J. Birgeneau, S. S. Dana, D. Davidov F. Garcia-Golding, M. Kaplan, C. R. Safinya, and R. Schaetzing, J. Phys. (France) 40, 339 (1979).

    Google Scholar 

  33. I. Lelidis and G. Durand, Phys. Rev. Lett. 73, 672 (1994).

    ADS  Google Scholar 

  34. P. G. De Gennes, Solid State Commun. 10, 753 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Opticheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \). Zhurnal 41, 341–347 (February 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirantsev, L.V., Zakharov, A.V. & Korsakov, V.G. The effect of surface roughness of a solid substrate on its wetting by a smectic-A structure in the nematic phase of a liquid crystal. Phys. Solid State 41, 306–312 (1999). https://doi.org/10.1134/1.1131080

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1131080

Keywords

Navigation