Skip to main content
Log in

Differences in the atomic environment of nonequivalent sites in SiC-polytype structures

  • Semiconductors, Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A general algorithm is proposed for calculating the Θ series of SiC polytypes. The obtained Θ series of the main SiC polytypes can be useful in calculating lattice sums, in particular when using the Mellin transform of the Θ series. By expanding the Θ series in the Jacobi parameter, one obtains sequences of coordination numbers for crystallographically nonequivalent atomic sites in the main SiC polytypes. A nontrivial interrelationship is demonstrated between these numerical sequences and the local symmetry of the nonequivalent sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. M. Tairov, Mater. Sci. Eng., B 29, 83 (1995).

    Article  Google Scholar 

  2. R. F. Davis, G. Kelner, M. Shur, J. W. Palmour, and J. A. Edmond, Proc. IEEE 79, 677 (1991).

    ADS  Google Scholar 

  3. R. F. Davis, J. W. Palmour, and J. A. Edmond, Diamond Relat. Mater. 1, 109 (1992).

    Google Scholar 

  4. J. H. Edgar, J. Mater. Res. 7,1, 235 (1992).

    ADS  Google Scholar 

  5. R. F. Davis, J. Vac. Sci. Technol. A 11,4, 829 (1993).

    Article  ADS  Google Scholar 

  6. C. M. Venvliet, G. Bosman, and L. L. Hench, Ann. Res. Mater. 18, 381 (1988).

    Google Scholar 

  7. A. R. Verma, P. Krishna, Polymorphism and polytypism in crystals, (John Wiley & Sons, N.Y. 1966; Mir, Moscow, 1969).

    Google Scholar 

  8. Yu. M. Tairov and V. F. Tsvetkov, Prog. Cryst. Growth Charact. 7, 111 (1983).

    Article  Google Scholar 

  9. M. Dubey, U. Shanker Ram, K. Nath Rai, and G. Singh, Phys. Status Solidi A 18,2, 689 (1973).

    Google Scholar 

  10. G. B. Dubrovskii and E. I. Radovanova, Phys. Status Solidi 48, 875 (1971).

    Google Scholar 

  11. D. J. Larkin, P. G. Neudeck, J. A. Powell, and L. G. Matus, Appl. Phys. Lett. 65, 1659 (1994).

    Article  ADS  Google Scholar 

  12. G. Pensl and W. J. Choyke, Physica B 185, 264 (1993).

    Article  ADS  Google Scholar 

  13. Y. A. Vodakov, G. A. Lomakina, E. N. Mokhov, E. I. Radovanova, V. I. Sokolov, M. M. Usmanova, G. F. Yuldashev, and B. S. Machmudov, Phys. Status Solidi A 35, 37 (1976).

    Google Scholar 

  14. I. J. Zucker, J. Math. Phys. 16,11, 2189 (1975).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. M. L. Glasser and I. J. Zucker, Theor. Chem.: Adv. Persp. 5, 67 (1980).

    Google Scholar 

  16. N. J. A. Sloane and B. K. Teo, J. Chem. Phys. 83, 6520 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  17. N. J. A. Sloane, J. Math. Phys. 28, 1653 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. M. Odlyzko and N. J. A. Sloane, Stud. Sci. Math. Hung. 15,4, 461 (1980).

    MathSciNet  Google Scholar 

  19. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, edited by M. Abramowitz and I. A. Stegun, National Bureau of Standards, Appl. Math. Series-55 (1964).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 41, 183–186 (February 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madison, A.E. Differences in the atomic environment of nonequivalent sites in SiC-polytype structures. Phys. Solid State 41, 160–163 (1999). https://doi.org/10.1134/1.1130748

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1130748

Keywords

Navigation