Skip to main content
Log in

Ordering of interacting subsystems. Molecular dynamics

  • Lattice Dynamics. Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The molecular dynamics method is used to examine the ordering of interacting subsystems in a two-component, two-dimensional Coulomb gas, consisting of equal amounts of positively and negatively charged particles, which simulates the behavior of a system of interacting vortices. In particular, it is found that when the system temperature is lowered from the Kosterlitz-Thouless transition point, additional ordering of the vortex chains may take place. It is noted that this process may stimulate the development of vortex chains observed in real superfluid, magnetic, and superconducting systems. Possible applications of the molecular dynamics method to phase separation and the ordering of adiabatically slowly moving subsystems in the collective field of a fast subsystem are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Velasco and S. Toxyaerd, Phys. Rev. Lett. 71, 388 (1993).

    Article  ADS  Google Scholar 

  2. F. J. Alexander, S. Chen, and D. W. Grunau, Phys. Rev. B 48, 634 (1993).

    Article  ADS  Google Scholar 

  3. G. Leptoukh, B. Strickland, and C. Roland, Phys. Rev. Lett. 74, 3636 (1995).

    Article  ADS  Google Scholar 

  4. S. Bastea and J. L. Lebowitz, Phys. Rev. Lett. 75, 3776 (1995).

    Article  ADS  Google Scholar 

  5. D. Wei and G. N. Patey, Phys. Rev. Lett. 68, 2043 (1992).

    ADS  Google Scholar 

  6. J. J. Weis and A. Levesque, Phys. Rev. Lett. 71, 2729 (1993).

    ADS  Google Scholar 

  7. J. Ayton, M. I. P. Gingras, and G. N. Patey, Phys. Rev. Lett. 75, 2360 (1995).

    Article  ADS  Google Scholar 

  8. I. M. Svishchev and P. G. Kusalik, Phys. Rev. Lett. 73, 975 (1994).

    Article  ADS  Google Scholar 

  9. I. M. Svishchev and P. G. Kusalik, Phys. Rev. Lett. 75, 3289 (1995).

    Article  ADS  Google Scholar 

  10. N. Kukharkin, S. A. Orszag, and V. Yakhot, Phys. Rev. Lett. 75, 2486 (1995).

    ADS  Google Scholar 

  11. L. M. Smith and V. Yakhot, Phys. Rev. Lett. 71, 352 (1993).

    ADS  Google Scholar 

  12. K. S. Fine et al., Phys. Rev. Lett. 75, 3277 (1995).

    Article  ADS  Google Scholar 

  13. V. L. Berezinskiii, Zh. Éksp. Teor. Fiz. 59, 907 (1970) [Sov. Phys. JETP 32, 493 (1970)]; Zh. Éksp. Teor. Fiz. 60, 1144 (1971) [sic].

    Google Scholar 

  14. J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Sol. Stat. Phys. 6, 1181 (1973).

    ADS  Google Scholar 

  15. J. M. Kosterlitz, J. Phys. C: Sol. Stat. Phys. 7, 1046 (1974).

    ADS  Google Scholar 

  16. K. Holmlund and P. Minnhagen, Phys. Rev. Lett. 54, 523 (1996).

    ADS  Google Scholar 

  17. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

    ADS  Google Scholar 

  18. P. C. Hohenberg, Phys. Rev. 158, 383 (1967).

    Article  ADS  Google Scholar 

  19. V. Ambegaokar et al., Phys. Rev. B 19, 1806 (1980).

    ADS  Google Scholar 

  20. S. A. Trugman and S. Doniach, Phys. Rev. B 26, 3682 (1982).

    Article  ADS  Google Scholar 

  21. D. Schechtman et al., Phys. Rev. Lett. 53, 1951 (1984).

    ADS  Google Scholar 

  22. P. A. Kalugin, A. Yu. Kitaev, and L. S. Levitov, Pis’ma Zh. Éksp. Teor. Fiz. 41(3), 119 (1985) [Sov. Phys. JETP Lett. 41, 145 (1985)].

    Google Scholar 

  23. D. V. Olenev and Yu. Kh. Vekilov, JETP Lett. 64, 612 (1996).

    Article  ADS  Google Scholar 

  24. V. E. Fortov et al., JETP Lett. 64, 82 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  25. É. L. Nagaev, Usp. Fiz. Nauk 166, 833 (1996).

    Google Scholar 

  26. V. N. Krivoruchko, Fiz. Nizk. Temp. 22, 1047 (1996).

    Google Scholar 

  27. A. É. Filippov, Zh. Éksp. Teor. Fiz. 111, 1775 (1997) [JETP 84, 971 (1997)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 40, 1701–1704 (September 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippov, A.É. Ordering of interacting subsystems. Molecular dynamics. Phys. Solid State 40, 1546–1549 (1998). https://doi.org/10.1134/1.1130595

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1130595

Keywords

Navigation