Skip to main content
Log in

Influence of impurities on the low-temperature deformation of nanocrystalline copper

  • Defects. Dislocations. Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The influence of ZrO2 particles on the low-temperature deformation of nanocrystalline copper produced by strong plastic deformation is investigated using equichannel angular pressing. A comparison is made between the deformation characteristics in tension and compression in the temperature range 4.2–400 K, measured for copper and the composite Cu:0.3 vol. % ZrO2. It is shown that within 4.2–200 K the yield point σ sm of the composite is higher than that for copper, attaining 680 MPa at 4.2 K, then the yield points are close in value up to room temperature, and diverge again as the temperature is raised. Possible causes of the dissimilar influence of an impurity on the strength and plasticity characteristics of nanocrystalline copper in various temperature intervals are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Lebedev, S. A. Pulnev, V. I. Kopylov, Yu. A. Burenkov, V. V. Vetrov, and O. V. Vylegzhanin, Scr. Mater. 35, 1077 (1996).

    Article  Google Scholar 

  2. A. B. Lebedev, S. A. Pul’nev, V. V. Vetrov, Yu. A. Burenkov, V. I. Kopylov, and K. V. Betekhtin, Fiz. Tverd. Tela (St. Petersburg) 40, 1268 (1998) [Phys. Solid State 40, 1155 (1998)].

    Google Scholar 

  3. V. V. Shpeizman, V. I. Nikolaev, B. I. Smirnov, V. V. Vetrov, S. A. Pul’nev, and V. I. Kopylov, Fiz. Tverd. Tela (St. Petersburg) 40, 1264 (1998) [Phys. Solid State 40, 1151 (1998)].

    Google Scholar 

  4. I.-W. Chen and Y.-H. Chiao, Acta Metall. 31, 1627 (1983).

    Google Scholar 

  5. V. M. Segal, V. I. Reznikov, A. E. Drobyshevskii, and V. I. Kopylov, Izv. Akad. Nauk. SSSR, Met. 1, 115 (1981).

    Google Scholar 

  6. N. A. Akhmadeev, R. Z. Valiev, V. I. Kopylov, and R. R. Mulyukov, Izv. Akad. Nauk. SSSR, Met. 5, 96 (1992).

    Google Scholar 

  7. V. M. Segal, V. I. Reznikov, V. I. Kopylov, D. A. Pavlik, and V. F. Malyshev, in Plastic Structuring Processes in Metals [in Russian], Nauka i Tekhnika, Minsk (1994), 232 pp.

    Google Scholar 

  8. S. Ferrasse, V. M. Segal, K. T. Hartwig, and R. E. Goforth, Metall. Mater. Trans. A 28, 1047 (1997).

    Google Scholar 

  9. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 37, 2281 (1995) [Phys. Solid State 37, 1248 (1995)].

    Google Scholar 

  10. J. E. Carsley, J. Ning, W. W. Milligan, S. A. Hackney, and E. S. Aifantis, Nanostruct. Mater. 5, 441 (1995).

    Google Scholar 

  11. M. Yu. Gutkin, “Defect models and plastic deformation mechanisms in inhomogeneous mesostructured and nanostructured media,“ Author’s Abstract of Doctoral Dissertation [in Russian] (Institute of Problems in Machine Construction of the Russian Academy of Sciences, St. Petersburg, 1997), 34 pp.

    Google Scholar 

  12. D. A. Wigley, Mechanical Properties of Materials at Low Temperatures (Plenum Press, New York-London, 1971), 373 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 40, 1639–1641 (September 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shpeizman, V.V., Nikolaev, V.I., Smirnov, B.I. et al. Influence of impurities on the low-temperature deformation of nanocrystalline copper. Phys. Solid State 40, 1489–1491 (1998). https://doi.org/10.1134/1.1130583

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1130583

Keywords

Navigation