Skip to main content
Log in

A nondiffusion mechanism for writing shifted holograms in LiNbO3

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper attempts to explain the experimental facts that the resolution of LiNbO3 crystals in writing holograms is poor, and that large discrepancies exist between the measured characteristics of diffraction efficiency and predictions based on current and widely used models. A new model for charge transport is proposed that takes into account macro-and mesoscopic nonuniformities. It is shown that the electric fields arising from modulation of the spontaneous polarization by defects lead to asymmetric diffusion of photoexcited electrons, which makes it highly unlikely that the writing of shifted components of holograms is via a diffusion mechanism. Possible characteristics of shifted and non-shifted holograms written via photogalvanic currents are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Glass, D. von der Linde, and T. J. Negran, Appl. Phys. Lett. 25, 233 (1974).

    Article  Google Scholar 

  2. B. I. Sturman and V. M. Fridkin, Photogalvanic Effects in Media without a Center of Inversion and Related Phenomena [in Russian], Nauka, Moscow (1992).

    Google Scholar 

  3. I. F. Kanaev, V. K. Malinovskii, and A. M. Pugachev, Fiz. Tverd. Tela (Leningrad) 29, 692 (1987) [Sov. Phys. Solid State 29, 396 (1987)].

    Google Scholar 

  4. I. F. Kanaev and V. K. Malinovskii, Fiz. Tverd. Tela (Leningrad) 34, 2528 (1992) [Sov. Phys. Solid State 34, 1355 (1992)].

    Google Scholar 

  5. I. F. Kanaev, V. K. Malinovskii, A. V. Novomlintsev, and A. M. Pugachev, Avtometriya 3, 3 (1996).

    Google Scholar 

  6. P. A. Flinn and A. A. Maradudin, Ann. Phys. (New York) 18, 81 (1962).

    Article  MathSciNet  Google Scholar 

  7. M. G. Moharan, J. K. Gaylord, R. Magnusson, and L. Yong, J. Appl. Phys. 50, 5642 (1979).

    ADS  Google Scholar 

  8. L. J. Young, M. G. Moharan, F. E. Guibaly, and E. Lun, J. Appl. Phys. 50, 4201 (1979).

    ADS  Google Scholar 

  9. R. A. Rupp, R. Sommerfeldt, K. H. Ringhofer, and E. Kratzig, Appl. Phys. B 51, 364 (1990).

    Article  Google Scholar 

  10. I. F. Kanaev and V. K. Malinovskii, Avtometriya 4, 37 (1991).

    Google Scholar 

  11. M. P. Petrov, S. N. Stepanov, and A. V. Khomenko, Photosensitive Electrooptic Media in Holography and Optical Information Processing [in Russian], Nauka, Leningrad (1983).

    Google Scholar 

  12. I. F. Kanaev and V. K. Malinovskii, Avtometriya 5, 63 (1983).

    Google Scholar 

  13. G. F. Neumark, Phys. Rev. 125, 838 (1962).

    Article  ADS  Google Scholar 

  14. R. A. Rupp, Appl. Phys. B 41, 153 (1986).

    Article  Google Scholar 

  15. I. F. Kanaev and V. K. Malinovskii, Fiz. Tverd. Tela (Leningrad) 24, 1223 (1982) [Sov. Phys. Solid State 24, 693 (1982)].

    Google Scholar 

  16. I. F. Kanaev and V. K. Malinovskii, Fiz. Tverd. Tela (St. Petersburg) 38, 3029 (1996) [Phys. Solid State 38, 1656 (1996)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 39, 1636–1642 (September 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanaev, I.F., Malinovskii, V.K., Novomlintsev, A.V. et al. A nondiffusion mechanism for writing shifted holograms in LiNbO3 . Phys. Solid State 39, 1459–1465 (1997). https://doi.org/10.1134/1.1130129

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1130129

Keywords

Navigation