Skip to main content
Log in

Thermally activated reconstruction in Yb-Si(111) thin-film structures

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electronic properties and mechanisms of formation of Yb-Si(111) thin-film structures, produced by room-temperature deposition of Yb atoms on the Si(111)7×7 surface are studied by Auger electron and LEED spectroscopy and the contact potential difference method. A study is also made of the effect of heating to 800 K on the properties of these structures. The interface is shown to form by the Stransky-Krastanov mechanism. Heating the Yb-Si(111) system is found to result in a very high (up to 1 eV) increase of the work function for all Yb atom concentrations on the silicon surface. In the adsorption stage, this increase is due to the growth of 2D ytterbium domains, which is accompanied by the formation of polarized domains from the silicon surface atoms with dangling valence bonds. The dipoles are oriented in such a way that their formation reduces the total energy of the Yb-Si(111) system and increases the work function. In the stage of silicide formation, the increase of the work function under heating is ultimately due to the appearance of a layer of silicon atoms on the Yb-Si(111) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bechstedt and R. Enderlein, Semiconductor Surface and Interface, Physical Research, Vol. 5; Akademie-Verlag, Berlin (1988); Mir, Moscow (1990).

    Google Scholar 

  2. G. Rossi, Surf. Sci. Rep. 7, 1 (1987).

    Article  Google Scholar 

  3. T. V. Krachino, M. V. Kuz’min, M. V. Loginov, and M. A. Mittsev, Fiz. Tverd. Tela (St. Petersburg) 37, 256 (1997) [Phys. Solid State 39, 224 (1997)].

    Google Scholar 

  4. C. Wigren, J. N. Andersen, R. Niholm, U. O. Karlson, J. Nogami, A. A. Baski, and C. F. Quate, Phys. Rev. B 47, 9663 (1993).

    Article  ADS  Google Scholar 

  5. C. Wigren, J. N. Andersen, R. Niholm, M. Göthelid, M. Hammar, C. Törnevik, and U. O. Karlson, Phys. Rev. B 48, 11014 (1993).

    Google Scholar 

  6. M. V. Kuz’min, M. V. Loginov, and M. A. Mittsev, Pisma Zh. Tekh. Fiz. 21, No. 19, 73 (1995) [Tech. Phys. Lett. 21, 803 (1995)].

    Google Scholar 

  7. M. P. Seah, Surf. Sci. 32, 703 (1972).

    Article  Google Scholar 

  8. R. Kern, G. Le Lay, and J. J. Metois, in Current Topics in Material Science, edited by E. Kaldis, North-Holland, Amsterdam (1979), Vol. 3, p. 131.

    Google Scholar 

  9. P. W. Palmberg and T. N. Rhodin, J. Appl. Phys. 39, 2425 (1968).

    Google Scholar 

  10. J. M. Charig and D. K. Skinner, Surf. Sci. 19, 283 (1970).

    Article  Google Scholar 

  11. Y. Matsushita, K. Yagi, T. Narusava, and G. Honjo, Jpn. J. Appl. Phys., Suppl. 2, Pt. 1, 567 (1974).

  12. Yu. S. Vedula, V. V. Gonchar, A. G. Naumovets, and A. G. Fedorus, Fiz. Tverd. Tela (Leningrad) 19, 1569 (1977) [Sov. Phys. Solid State 19, 916 (1977)].

    Google Scholar 

  13. J. Kołaczkiewicz and E. Bauer, Surf. Sci. 154, 357 (1985).

    Google Scholar 

  14. J. Kołaczkiewicz and E. Bauer, Surf. Sci. 175, 487 (1986).

    Google Scholar 

  15. A. Stenborg and E. Bauer, Phys. Rev. B 36, 5840 (1987).

    Article  ADS  Google Scholar 

  16. A. Pellissier, R. Baptist, and G. Chauvet, Surf. Sci. 210, 99 (1989).

    Article  Google Scholar 

  17. K. O. Magnusson and R. Reihl, Phys. Rev. B 41, 12071 (1990).

    Google Scholar 

  18. E. G. Michel, P. Pervan, G. R. Castro, R. Miranda, and K. Wandelt, Phys. Rev. B 45, 11811 (1992).

    Google Scholar 

  19. R. Compaño, U. del Pennino, and C. Mariani, Phys. Rev. B 46, 6955 (1992).

    ADS  Google Scholar 

  20. D. Vlachos, M. Kamaratos, and C. Papageorgopoulos, Solid State Commun. 90, 175 (1994).

    Article  Google Scholar 

  21. F. F. Vol’kenshtein, Electronic Processes on Semiconductor Surfaces Under Chemisorption [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  22. W. Mönch, Semiconductor Surfaces and Interfaces, Springer, Berlin (1993).

    Google Scholar 

  23. I. Chorkendorff, J. Kofoed, and J. Onsgaard, Surf. Sci. 152/153, Pt. 2, 749 (1985).

    Article  Google Scholar 

  24. R. Hofmann, W. A. Henle, F. P. Netzer, and M. Neuber, Phys. Rev. B 46, 3857 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 39, 1672–1678 (September 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krachino, T.V., Kuz’min, M.V., Loginov, M.V. et al. Thermally activated reconstruction in Yb-Si(111) thin-film structures. Phys. Solid State 39, 1493–1497 (1997). https://doi.org/10.1134/1.1130106

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1130106

Keywords

Navigation