Skip to main content
Log in

EPR and dielectric relaxation of Fe3+ in KTaO3

  • Semiconductors and Insulators
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

EPR and the method of dielectric losses have been used to investigate Fe3+ centers of axial and orthorhombic symmetry in KTaO3 single crystals. The EPR spectrum of orthorhombic-symmetry Fe3+ obtained in the 8-mm wavelength range at T=77 K is described by the spin-Hamiltonian \(\hat H = \beta (g_x H_x S_x + g_y H_y S_y + g_z H_z S_z ) + DS_z^2 + E(S_x^2 - S_y^2 )\) with parameters g x=1.98, g y=2.01, g z=2.00, D=0.43 cm−1, and E=5.87×10t-2 cm−1. From the dielectric measurement data we have obtained the following parameters of the relaxation of the orthorhombic Fe3+ centers in KTaO3: characteristic relaxation frequency τ −10 =2.33×1012 Hz and activation energy E a=0.044 eV. A model of the orthorhombic Fe3+ center in KTaO3 is discussed within the framework of the kinetic parameters obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Wessel and H. Goldlik, J. Appl. Phys. 39, 4855 (1968).

    Article  Google Scholar 

  2. I. P. Bykov, M. D. Glinchuk, A. A. Karmazin, and V. V. Laguta, Fiz. Tverd. Tela 25, 3586 (1983) [Sov. Phys. Solid State 25, 2063 (1983)].

    Google Scholar 

  3. B. E. Vugmeister, M. D. Glinchuk, and A. P. Pechenyi, Fiz. Tverd. Tela 26, 3389 (1984) [Sov. Phys. Solid State 26, 2036 (1984)].

    Google Scholar 

  4. V. V. Laguta, M. D. Glinchuk, and A. P. Pechenyi, Fiz. Tverd. Tela 27, 2211 (1985) [Sov. Phys. Solid State 27, 1328 (1985)].

    Google Scholar 

  5. I. N. Geifman, I. V. Kozlova, B. K. Krulikovskii, and T. V. Son’ko, Dep. VINITI, Reg. No. 7670-V86.

  6. A. P. Pechenyi, M. D. Glinchuk, T. V. Antimirova, and W. Kleeman, Phys. Status Solidi B 174, 325 (1992).

    Google Scholar 

  7. D. M. Hannon, Phys. Rev. 164, 366 (1967).

    Article  ADS  Google Scholar 

  8. A. S. Nowick, S. Q. Fu, W.-K. Lee, B. S. Lim, and T. Scherban, Mater. Sci. Eng. B 23, 19 (1994).

    Article  Google Scholar 

  9. V. V. Laguta, M. D. Glinchuk, A. A. Karmazin, and I. P. Bykov, Fiz. Tverd. Tela 27, 162 (1985) [Sov. Phys. Solid State 27, 94 (1985)].

    Google Scholar 

  10. B. Sacle, J. L. Gravil, and L. A. Boatner, J. Phys.: Cond. Matter. 6, 4077 (1994).

    ADS  Google Scholar 

  11. Yu. M. Poplavko, Physics of Insulators [in Russian] Kiev, (1980).

  12. S. Maniv, A. Reuveni, and Z. Luz, J. Chem. Phys. 66, 2285 (1977).

    Article  ADS  Google Scholar 

  13. I. Laulicht, Y. Yacobi, and A. Baram, J. Chem. Phys. 91, 79 (1989).

    Article  ADS  Google Scholar 

  14. G. D. Watkins, Phys. Rev. 113, 91 (1959).

    ADS  Google Scholar 

  15. R. W. Dreyfus, Phys. Rev. 121, 1675 (1961).

    Article  ADS  Google Scholar 

  16. K. Lal and D. R. Pahwa, Phys. Rev. B 4, 2741 (1971).

    Article  ADS  Google Scholar 

  17. J. B. Wachtman, Phys. Rev. 131, 517 (1963).

    Article  ADS  Google Scholar 

  18. M. Kh. Karapet’yants and S. I. Drakin, The Structure of Matter [in Russian] Moscow, (1978), p. 86.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 39, 861–864 (May 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geifman, I.N., Golovina, I.S. & Kozlova, I.V. EPR and dielectric relaxation of Fe3+ in KTaO3 . Phys. Solid State 39, 766–769 (1997). https://doi.org/10.1134/1.1129965

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1129965

Keywords

Navigation