Skip to main content
Log in

Acoustoplastic effect and internal friction of aluminum single crystals in various deformation stages

  • Defects. Dislocations. Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The dependences of the acoustoplastic effect and the internal friction on the oscillatory strain amplitude are measured in various deformation stages of low-purity aluminum single crystals. It is discovered that the acoustoplastic effect is observed not only in the macroscopic plastic region of the stress-strain diagram, but also for microplastic deformation in the “elastic” loading and unloading stages. The sign of the effect reverses during unloading. An increase in the strain rate leads to enhancement of the acoustoplastic effect and the absorption of the energy of ultrasonic vibrations causing this effect with a frequency of about 100 kHz. It is concluded that the acoustoplastic effect observed during both macro-and microplastic deformation is caused by the irreversible high-speed motion of dislocations through the long-range stress field of the other dislocations after breaking through the Cottrell atmospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Blaha and B. Langenecker, Naturwissenschaften 42, 556 (1955).

    Article  Google Scholar 

  2. R. Pohlman and F. Lechfeldt, Ultrasonics 4, 178 (1966).

    Article  Google Scholar 

  3. C. E. Winsper and D. H. Sansome, J. Inst. Met. 96, 353 (1968).

    Google Scholar 

  4. B. Langenecker, V. O. Jones, and J. Illiewich, in Proceedings of the First International Symposium on High-Power Ultrasonics, A. H. Crawford (ed.), IPC Science and Technology, Guildford (1972), p. 83.

    Google Scholar 

  5. O. M. Smirnov, Fiz. Khim. Obrab. Mater. (2), 134 (1988).

  6. A. J. Kennedy, J. Inst. Met. 87, 145 (1958–1959).

    Google Scholar 

  7. A. H. Meleka and G. B. Dunn, J. Inst. Met. 88, 407 (1959–1960).

    Google Scholar 

  8. A. B. Lebedev, Fiz. Tverd. Tela (St. Petersburg) 35, 2305 (1993) [Phys. Solid State 35, 1141 (1993)].

    Google Scholar 

  9. K. V. Sapozhnikov and S. B. Kustov, Fiz. Tverd. Tela (St. Petersburg) 37, 2819 (1995) [Phys. Solid State 37, 1554 (1995)]; Fiz. Tverd. Tela (St. Petersburg) 38, 127 (1996) [Phys. Solid State 38, 68 (1996)].

    Google Scholar 

  10. K. V. Sapozhnikov and S. B. Kustov, Fiz. Tverd. Tela (St. Petersburg) 38, 2760 (1996) [Phys. Solid State 38, 1513 (1996)].

    Google Scholar 

  11. S. B. Kustov, B. K. Kardashev, V. I. Ivanov, S. N. Golyandin, Yu. A. Burenkov, S. P. Nikanorov, V. M. Chernov, H. Luft, G. Mattausch, E. Hegenbarth, and U. Schreiber, Preprint No. FÉI-2141, Institute of Physics and Power Engineering, Obninsk (1990).

  12. S. P. Nikanorov and B. K. Kardashev, Elasticity and Dislocation Inelasticity of Crystals [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  13. R. H. Chambers and R. Smoluchowski, Phys. Rev. 117, 725 (1960).

    Article  ADS  Google Scholar 

  14. V. A. Chelnokov, V. A. Stepanov, and N. L. Kuz’min, Fiz. Tverd. Tela (Leningrad) 12, 841 (1970) [Sov. Phys. Solid State 12, 649 (1970)].

    Google Scholar 

  15. D. Gelli, J. Appl. Phys. 33, 1547 (1962).

    Article  Google Scholar 

  16. S. B. Kustov, S. N. Golyandin, J. van Humbeeck, I. Hurtado, and R. de Batist, in Proceedings of the Third International Symposium on Mechanics and Mechanisms of Material Damping. ASTM Special Technical Publication No. 1304, A. Wolfenden and V. K. Kinra (eds.), ASTM, Norfolk (1997) (in print).

    Google Scholar 

  17. G. S. Baker and S. H. Carpenter, J. Appl. Phys. 38, 1586 (1967).

    Google Scholar 

  18. R. Friedrich, G. Kaiser, and W. Pechhold, Z. Metallk. 60, 390 (1969).

    Google Scholar 

  19. T. Endo, K. Suzuki, and M. Ishikawa, Trans. Jpn. Inst. Met. 20, 706 (1979).

    Google Scholar 

  20. A. V. Kozlov and S. I. Selitser, Mater. Sci. Eng. A 102, 143 (1988).

    Google Scholar 

  21. M. Tanibayashi, Phys. Status Solidi A 128, 83 (1991).

    Google Scholar 

  22. R. Friedrich and U. Engel, in Proceedings of the First International Symposium on High-Power Ultrasonics, A. H. Crawford (ed.), IPC Science and Technology, Guildford (1972), p. 72.

    Google Scholar 

  23. T. Ohgaku and N. Takeuchi, Phys. Status Solidi A 105, 153 (1988).

    Google Scholar 

  24. A. A. Predvoditelev, N. K. Rakova, and Nang Hung-pin, Fiz. Tverd. Tela (Leningrad) 9, 300 (1967) [Sov. Phys. Solid State 9, 224 (1967)].

    Google Scholar 

  25. I. V. Stratan, A. A. Predvoditelev, and V. M. Stepanova, Fiz. Tverd. Tela (Leningrad) 12, 767 (1970) [Sov. Phys. Solid State 12, 594 (1970)].

    Google Scholar 

  26. K. V. Sapozhnikov and S. B. Kustov, J. Phys. IV (Paris) 6, C8–293 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Fiz. Tverd. Tela (St. Petersburg) 39, 1794–1800 (October 1997)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sapozhnikov, K.V., Kustov, S.B. Acoustoplastic effect and internal friction of aluminum single crystals in various deformation stages. Phys. Solid State 39, 1601–1606 (1997). https://doi.org/10.1134/1.1129906

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1129906

Keywords

Navigation