High Temperature

, Volume 46, Issue 2, pp 261–274 | Cite as

Special features characteristic of the use of differential scanning calorimetry for the investigation of the kinetics of thermal decomposition of energetic materials

  • A. A. Koptelov
  • Yu. M. Milyokhin
  • D. N. Sadovnichii
  • N. I. Shishov


The results of analysis of mathematical models of “ideal” differential scanning calorimeter are used for determining the experimental conditions which provide for the minimal level of errors of determination of the kinetic constants of exothermal reactions of thermal decomposition of energetic materials under conditions of constant-rate heating of samples and in the isothermal mode. The predicted estimates of admissible values of the basic parameters of models (mass of samples, rate of heating, temperature range of investigations, and so on) are based on the experimental data largely obtained in the investigation of cyclotetramethylenetetranitramine (HMX).

Key words

differential scanning calorimetry thermal decomposition kinetic parameters energetic materials HMX 

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smirnov, L.P., Usp. Khim., 2004, vol. 73, no. 11, p. 1210.Google Scholar
  2. 2.
    Wendlandt, W.W., Thermal Methods of Analysis, New York: Wiley, 1974. Translated under the title Termicheskie metody analiza, Moscow: Mir, 1978.Google Scholar
  3. 3.
    Rogers, R.N., Thermochim. Acta, 1975, vol. 11, no. 2, p. 131.CrossRefGoogle Scholar
  4. 4.
    Koptelov, A.A., Karyazov, S.V., and Shlenskii, O.F., Khim. Vys. Energ., 2003, vol. 37, no. 3, p. 185.Google Scholar
  5. 5.
    Manelis, G.B., Nazin, G.M., Rubtsov, Yu.I., and Strunin, V.A., Termicheskoe razlozhenie i gorenie vzryvchatykh veshchestv i porokhov (Thermal Decomposition and Combustion of Explosives and Powders), Moscow: Nauka, 1996.Google Scholar
  6. 6.
    Shu, Yu., Korsunskii, B.L., and Nazin, G.M., Usp. Khim., 2004, vol. 73, no. 3, p. 320.Google Scholar
  7. 7.
    Burnham, A.K. and Weese, R.K., Thermal Decomposition of HMX, in The Proceedings of 36th International Annual Conference of ICT, Karlsruhe, 2005, p. 152.Google Scholar
  8. 8.
    Encyclopedia of Explosives and Related Items, Dover, NJ: Large Caliber Weapon Systems Laboratory, 1980, vol. 9.Google Scholar
  9. 9.
    Kraeutle, K.J., The Thermal Decomposition of HMX—Effect of Experimental Conditions and of Additives, The 18th JANNAF Combustion Meeting, 1981, p. 383.Google Scholar
  10. 10.
    Kraeutle, K.J., The Differential Thermal Analysis of HMX at Atmospheric and Superatmospheric Pressures, The 19th JANNAF Combustion Meeting, 1982, p. 331.Google Scholar
  11. 11.
    Merzhanov, A.G., Barzykin, V.V., and Abramov, V.G., Khim. Fiz., 1996, vol. 15, no. 6, p. 3.Google Scholar
  12. 12.
    Barzykin, V.V. and Merzhanov, A.G., Dokl. Akad. Nauk SSSR, 1958, vol. 120, no. 6, p. 1271.Google Scholar
  13. 13.
    Gray, A.P., A Simple Generalized Theory for the Analysis of Dynamic Thermal Measurement, in Analytical Calorimetry, New York: Plenum, 1968, p. 238.Google Scholar
  14. 14.
    Bershtein, V.A. and Egorov, V.M., Differentsial’naya skaniruyushchaya kalorimetriya v fizikokhimii polimerov (Differential Scanning Calorimetry in Physical Chemistry of Polymers), Leningrad: Khimiya, 1990.Google Scholar
  15. 15.
    Dul’nev, G.N. and Zarichnyak, Yu.P., Teploprovodnost’ smesei i kompozitsionnykh materialov (Thermal Conductivity of Mixtures and Composite Materials), Leningrad: Energiya, 1974.Google Scholar
  16. 16.
    Koptelov, A.A., Milyokhin, Yu.M., and Sadovnichii, D.N., The Effect of γ-Irradiation on the Pattern of Thermal Decomposition of Cyclotetramethylenetetranitramine, in Materialy XI Rossiiskoi konferentsii po teplofizicheskim svoistvam veshchestv (Proceedings of XI Russian Conference on Thermophysical Properties of Substances), St. Petersburg, 2005, vol. 1, p. 77.Google Scholar
  17. 17.
    Encyclopedia of Explosives and Related Items, Dover, NJ: Large Caliber Weapon Systems Laboratory, 1974, vol. 7.Google Scholar
  18. 18.
    Rylance, J. and Stubley, D., Thermochim. Acta, 1975, vol. 13, p. 253.CrossRefGoogle Scholar
  19. 19.
    Arnold, M., Veress, G.E., Paulik, J., and Paulik, F., Anal. Chim. Acta, 1981, vol. 124, no. 2, p. 341.CrossRefGoogle Scholar
  20. 20.
    Shlenskii, O.F., Afanas’ev, N.V., and Shashkov, A.G., Termorazrushenie materialov. Polimery i kompozity pri intensivnom nagreve (Thermal Destruction of Materials. Polymers and Composites under Intense Heating), Moscow: Energoatomizdat, 1996.Google Scholar
  21. 21.
    Behrens, R., J. Phys. Chem., 1990, vol. 94, p. 6708.CrossRefGoogle Scholar
  22. 22.
    Fizika vzryva (Physics of Explosion), Orlenko, L.P, Ed., Moscow: Fizmatlit, 2004, vol. 1.Google Scholar
  23. 23.
    Rogers, R.N. and Morris, E.D., Anal. Chem., 1966, vol. 38, no. 3, p. 410.CrossRefGoogle Scholar
  24. 24.
    Carroll, B. and Manche, E.P., Thermochim. Acta, 1972, vol. 3, no. 6, p. 449.CrossRefGoogle Scholar
  25. 25.
    Koptelov, A.A., Karyazov, S.V., and Milyokhin, Yu.M., Dokl. Ross. Akad. Nauk, 2004, vol. 397, no. 4, p. 493 (Dokl. (Engl. transl.), vol. 397, no. 4).Google Scholar
  26. 26.
    Burnham, A.K., Weese, R.K., and Andrzejewski, W.J., Kinetics of HMX and CP Decomposition and Their Extrapolation for Lifetime Assessment, in The Proceedings of 36th International Annual Conference of ICT, Karlsruhe, 2005, p. 153.Google Scholar
  27. 27.
    Kishore, K., Anal. Chem., 1978, vol. 50, no. 8, p. 1079.CrossRefGoogle Scholar
  28. 28.
    Boiko, B.N., Prikladnaya mikrokalorimetriya. Otechestvennye pribory i metody (Applied Microcalorimetry. Domestic Instruments and Techniques), Moscow: Nauka, 2006.Google Scholar
  29. 29.
    Energeticheskie kondensirovannye sistemy (Energetic condensed systems), Zhukov, B.P., Ed., Moscow: Yanus-K, 1999.Google Scholar
  30. 30.
    Barzykin, V.V., Fiz. Goreniya Vzryva, 1973, vol. 9, no. 1, p. 37.Google Scholar
  31. 31.
    Koptelov, A.A., Milyokhin, Yu.M., and Gusev, S.A., Dokl. Ross. Akad. Nauk, 2007, vol. 416, no. 4, p. 496 (Dokl. Phys. Chem. (Engl. transl.), vol. 416, part 2, p. 265).Google Scholar
  32. 32.
    Milyokhin, Yu.M., Koptelov, A.A., Sadovnichii, D.N., et al., Fiz. Goreniya Vzryva, 2006, no. 2, p. 133.Google Scholar
  33. 33.
    Koptelov, A.A. and Zelenev, Yu.V., Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2003, vol. 46, issue 3, p. 55.Google Scholar
  34. 34.
    Merzhanov, A.G., Fiz. Goreniya Vzryva, 1973, no. 1, p. 4.Google Scholar
  35. 35.
    Watson, E.S., O’Neill, M.J., and Justin, J., Anal. Chem., 1964, vol. 36, no. 7, p. 1233.CrossRefGoogle Scholar
  36. 36.
    O’Neill, M.J., Anal. Chem., 1964, vol. 36, no. 7, p. 1238.CrossRefGoogle Scholar
  37. 37.
    Flinn, J.H. and Wall, L.A., J. Polym. Sci. Polym. Lett. Ed., 1966, vol. 4, no. 5, p. 323.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. A. Koptelov
    • 1
  • Yu. M. Milyokhin
    • 1
  • D. N. Sadovnichii
    • 1
  • N. I. Shishov
    • 1
  1. 1.Souyz Federal Center of Dual TechnologiesDzerzhinskii, Moscow oblastRussia

Personalised recommendations