Advertisement

Review Journal of Chemistry

, Volume 9, Issue 1, pp 1–11 | Cite as

Polymer Derivatives of Anticancer Drugs: Features of Synthesis and Biological Activity

  • O. V. ZhukovaEmail author
Article
  • 14 Downloads

Abstract

The state of the development of polymeric derivatives of anticancer agents for selective delivery is assessed, and relevant directions for further development and improvement in this field are identified. As part of the work, the available data on polymeric derivatives of anticancer preparations was analyzed, and the relevant unsolved problems in this direction were determined. Polymer systems for the selective delivery of anticancer agents, such as polymer micelles, polymer conjugates, polymer complexes, and nanohydrogels, are considered. The analysis was performed with respect to first-line therapy preparations (doxorubicin, cisplatin, 5-fluorouracil). The features of the synthesis of polymer systems for selective delivery are considered. The main directions of binding of the drug to the polymer carrier are determined. The advantage of polymeric carriers is their high molecular weight, which ensures the best pharmacokinetic parameters. The use of water-soluble carriers makes it possible to obtain simple injection systems, and the presence of functional groups in the polymer chain enables the polymer to be modified with various drugs and vectors for tumor cells. Such systems may also contain components (vectors) that “recognize” tumor cells, which increases the level of specific drug interactions with the target cell. Folic acid can be such a vector, since the expression of its receptors is higher for some tumor cells than for normal ones. Another example is steroid hormone residue; there are a sufficient number of its receptors on the surface of cancer cells. These compounds, which are used as cancer cell vectors, are poorly soluble in water. These substances become chemically attached to a water-soluble polymer carrier at a specific concentration. The system then becomes water-soluble. There are practically no studies on the search for and use of carrier polymers with their own pharmacological activity, including antitumor and immunostimulating. Polymethacrylates are a class of anionic polymers with their own potential pharmacological activity, which is associated with activation of the immune system. There are promising areas of research in this field: the determination of the optimal conditions for the synthesis of a water-soluble anionic polymer carrier based on methacrylic acid with the characteristics of a given molecular weight; the determination of the cytotoxicity of potential polymeric carriers in an in vitro cell culture and of the dependence of the cytotoxic effect on the molecular-weight characteristics of the polymer; the production of polymeric conjugates of doxorubicin, 5-fluorouracil, cisplatin, and their combinations; the study of the effect of molecular-weight characteristics, the structure of the polymer chain, and the degree of chemical modification of (co)polymers on the release of drugs from the polymer system under conditions simulating biosystems and on the cytotoxicity of polymer conjugates in vitro and in vitro; and the determination of their own immunostimulating properties (the study of the activation of macrophages under the action of polymers) of polymeric carriers with respect to the molecular weight, polydispersity, and the presence of hydrophilic anionic groups.

Keywords:

polymer selective delivery systems anticancer therapy polymer conjugates cisplatin doxorubicin 5-fluorouracil 

Notes

REFERENCES

  1. 1.
    Srivastava, A., Yadav, T., Sharma, S., Nayak, A., Kumar, A., and Mishra, N., J. Biosci. Med., 2016, vol. 4, p. 69.Google Scholar
  2. 2.
    Kakkar, A., Traverso, G., Farokhzad Omid, C., Weissleder, R., and Langer, R., Nat. Rev. Chem., 2017, vol. 1, 0063.Google Scholar
  3. 3.
    Torchilin, V.P., Nat. Rev. Drug Discovery, 2014, vol. 13, no. 11, p. 813.CrossRefGoogle Scholar
  4. 4.
    Senapati, S., Mahanta, A.K., Kumar, S., and Maiti, P., Signal Transduction Targeted Ther., 2018, vol. 3, 7.CrossRefGoogle Scholar
  5. 5.
    Ranjha, N.M. and Qureshi, U.F., Int. J. Pharm. Sci., 2014, vol. 6, p. 400.Google Scholar
  6. 6.
    Hoffman, A.S., Adv. Drug Delivery Rev., 2012, vol. 64, p. 18.CrossRefGoogle Scholar
  7. 7.
    Xu, Z., Guo, M., and Yan, H., Liu k, React. Funct. Polym., 2013, vol. 73, p. 564.CrossRefGoogle Scholar
  8. 8.
    Lue, S.J., Chen, B.W., Shih, C.M., Chou, F.Y., Lai, J.Y., and Chiu, W.Y., J. Nanosci. Nanotechnol., 2013, vol. 13, no. 8, p. 5305.CrossRefGoogle Scholar
  9. 9.
    Wallat, J.D., Harrison, J.K., and Pokorski, J.K., Mol. Pharm., 2018, vol. 15, no. 8, p. 2954.CrossRefGoogle Scholar
  10. 10.
    Huang, F., Cheng, R., Meng, F., Deng, C., and Zhong, Z., Biomacromolecules, 2015, vol. 16, no. 7, p. 2228.CrossRefGoogle Scholar
  11. 11.
    Mei, L., Liu, Y.Y., Zhang, H.J., Zhang, Z.R., and Gao, H.L., ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 9577.CrossRefGoogle Scholar
  12. 12.
    Seo, B.B., Choi, H., Koh, J.T., and Song, S.C., J. Controlled Release, 2015, vol. 209, p. 67.CrossRefGoogle Scholar
  13. 13.
    Deng, B., Ma, P., and Xie, Y., Nanoscale, 2015, vol. 7, p. 12773.CrossRefGoogle Scholar
  14. 14.
    Cheng, R., Meng, F.H., Deng, C., and Zhong, Z.Y., Nano Today, 2015, vol. 10, p. 656.CrossRefGoogle Scholar
  15. 15.
    Gong, J., Chen, M., Zheng, Y., Wang, S., and Wang, Y., J. Controlled Release, 2012, vol. 159, p. 312.CrossRefGoogle Scholar
  16. 16.
    Oberoi, H.S., Nukolova, N.V., Kabanov, A.V., and Bronich, T.K., Adv. Drug Delivery Rev., 2013, vol. 65, nos. 13–14, p. 1667.CrossRefGoogle Scholar
  17. 17.
    Zhao, H., Xu, J., Wan, J., Geng, S., Li, H., Peng, X., Fu, Q., He, M., Zhao, Y., and Yang, X., Nanoscale, 2017, vol. 9, no. 18, p. 5859.CrossRefGoogle Scholar
  18. 18.
    Fan, X., Zhao, X., Qu, X., and Fang, J., Int. J. Pharm., 2015, vol. 496, no. 2, p. 644.CrossRefGoogle Scholar
  19. 19.
    Emoto, S., Yamaguchi, H., Kamei, T., Ishigami, H., Suhara, T., Suzuki, Y., Ito, T., Kitayama, J., and Watanabe, T., Surg. Today, 2014, vol. 44, no. 5, p. 919.CrossRefGoogle Scholar
  20. 20.
    Ohta, S., Hiramoto, S., Amano, Y., Emoto, S., Yamaguchi, H., Ishigami, H., Kitayama, J., and Ito, T., Mol. Pharm., 2017, vol. 14, no. 9, p. 3105.CrossRefGoogle Scholar
  21. 21.
    Song, W., Tang, Z., Shen, N., Yu, H., Jia, Y., Zhang, D., Jiang, J., He, C., Tian, H., and Chen, X., J. Controlled Release, 2016, vol. 231, p. 94.CrossRefGoogle Scholar
  22. 22.
    Feng, Z., Lai, Y., Ye, H., Huang, J., Xi, X.G., and Wu, Z., Cancer Sci., 2010, vol. 101, no. 11, p. 2476.CrossRefGoogle Scholar
  23. 23.
    Yu, H., Tang, Z., Li, M., Song, W., Zhang, D., Zhang, Y., Yang, Y., Sun, H., Deng, M., and Chen, X., J. Biomed. Nanotechnol., 2016, vol. 12, no. 1, p. 69.CrossRefGoogle Scholar
  24. 24.
    Yu, H., Tang, Z., Zhang, D., Song, W., Zhang, Y., Yang, Y., Ahmad, Z., and Chen, X., J. Controlled Release, 2015, vol. 205, p. 89.CrossRefGoogle Scholar
  25. 25.
    Shi, C., Yu, H., Sun, D., Ma, L., Tang, Z., Xiao, Q., and Chen, X., Acta Biomater., 2015, vol. 18, p. 68.CrossRefGoogle Scholar
  26. 26.
    Butler, J.S. and Sadler, P.J., Curr. Opin. Chem. Biol., 2013, vol. 17, p. 175.CrossRefGoogle Scholar
  27. 27.
    Ghorbani, A., Omidvar, B., and Parsi, A., J. Nephropathol., 2013, vol. 2, p. 129.CrossRefGoogle Scholar
  28. 28.
    Zhuang, W., Ma, B., Liu, G., Chen, X., and Wang, Y., Regener. Biomater., 2018, vol. 5, no. 1, p. 1.CrossRefGoogle Scholar
  29. 29.
    Yellepeddi, V.K., Kumar, A., Maher, D.M., Chauhan, S.C., Vangara, K.K., and Palakurthi, S., Anticancer Res., 2011, vol. 31, p. 897.Google Scholar
  30. 30.
    Ahmad, Z., Tang, Z., Shah, A., Lv, S., Zhang, D., Zhang, Y., and Chen, X., Macromol. Biosci., 2014, vol. 14, no. 9, p. 1337.CrossRefGoogle Scholar
  31. 31.
    Makino, J., Cabral, H., Miura, Y., Matsumoto, Y., Wang, M., and Kinoh, H., J. Controlled Release, 2015, vol. 220, p. 783.CrossRefGoogle Scholar
  32. 32.
    Cabral, H. and Kataoka, K., J. Controlled Release, 2014, vol. 190, p. 465.CrossRefGoogle Scholar
  33. 33.
    Han, Y., Yin, W., Li, J., Zhao, H., Zha, Z., Ke, W., Wang, Y., He, C., and Ge, Z., J. Controlled Release, 2018, vol. 273, p. 30.CrossRefGoogle Scholar
  34. 34.
    Wang, J., Li, Y., Wang, L., Wang, X., and Tu, P., Drug Delivery, 2018, vol. 25, no. 1, p. 330.CrossRefGoogle Scholar
  35. 35.
    Prados, J., Melguizo, C., Ortiz, R., Velez, C., Alvarez, P.J., Arias, J.L., Ruiz, M.A., Gallardo, V., and Aranega, A., Anti-Cancer Agents Med. Chem., 2012, vol. 12, no. 9, p. 1058.CrossRefGoogle Scholar
  36. 36.
    Yu, Q., Wei, Z., Shi, J., Guan, S., Du, N., Shen, T., Tang, H., Jia, B., Wang, F., and Gan, Z., Biomacromolecules, 2015, vol. 16, no. 9, p. 2645.CrossRefGoogle Scholar
  37. 37.
    Tomala, J., Chmelova, H., Strohalm, J., Ulbrich, K., Sirova, M., Rihova, B., and Kovar, M., Int. J. Cancer, 2011, vol. 129, no. 8, p. 2002.CrossRefGoogle Scholar
  38. 38.
    Pimm, M.V., Perkins, A.C., Strohalm, J., Ulbrich, K., and Duncan, R., J. Drug Targeting, 1996, vol. 3, no. 5, p. 385.CrossRefGoogle Scholar
  39. 39.
    Ou, Y., Chen, K., Cai, H., Zhang, H., Gong, Q., Wang, J., Chen, W., and Luo, K., Biomater. Sci., 2018, vol. 6, no. 5, p. 1177.CrossRefGoogle Scholar
  40. 40.
    Wei, X., Luo, Q., Sun, L., Li, X., Zhu, H., Guan, P., Wu, M., Luo, K., and Gong, Q., ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 18, p. 11765.CrossRefGoogle Scholar
  41. 41.
    Yang, Y., Pan, D., Luo, K., Li, L., and Gu, Z., Biomaterials, 2013, vol. 34, no. 33, p. 8430.CrossRefGoogle Scholar
  42. 42.
    Ramalingam, V., Varunkumar, K., Ravikumar, V., and Rajaram, R., Sci. Rep., 2018, vol. 8, p. 3815.CrossRefGoogle Scholar
  43. 43.
    Qi, P., Wu, X., Liu, L., Yu, H., and Song, S., Front. Pharmacol., 2018, vol. 9, p. 12.CrossRefGoogle Scholar
  44. 44.
    Chytil, P., Šírová, M., Kudláčová, J., Říhová, B., Ulbrich, K., and Etrych, T., Mol. Pharm., 2018, vol. 15, no. 9, p. 3654.CrossRefGoogle Scholar
  45. 45.
    Etrych, T., Kovář, L., Strohalm, J., Chytil, P., Rihova, B., and Ulbrich, K., J. Controlled Release, 2011, vol. 154, no. 3, p. 241.CrossRefGoogle Scholar
  46. 46.
    Akasov, R., Drozdova, M., Zaytseva-Zotova, D., Leko, M., Chelushkin, P., Marc, A., Chevalot, I., Burov, S., Klyachko, N., Vandamme, T., and Markvicheva, E., Adv. Pharm. Bull., 2017, vol. 7, no. 4, p. 593.CrossRefGoogle Scholar
  47. 47.
    Wallat, J.D., Harrison, J.K., and Pokorski, J.K., Mol. Pharm., 2018, vol. 15, no. 8, p. 2954.CrossRefGoogle Scholar
  48. 48.
    Wong, P.T., Tang, S., Cannon, J., Chen, D., Sun, R., Lee, J., Phan, J., Tao, K., Sun, K., Chen, B., Baker, J.R.Jr., and Choi, S.K., Bioconjugate Chem., 2017, vol. 28, no. 12, p. 3016.CrossRefGoogle Scholar
  49. 49.
    Wong, P.T., Tang, S., Cannon, J., Mukherjee, J., Isham, D., Gam, K., Payne, M., Yanik, S.A., Baker, J.R., Jr. and Choi, S.K., ChemBioChem, 2017, vol. 18, no. 1, p. 126.CrossRefGoogle Scholar
  50. 50.
    Ofverholm, A., Arkblad, E., Skrtic, S., Albertsson, P., Shubbar, E., and Enerback, C., Clin. Biochem., 2010, vol. 43, p. 331.CrossRefGoogle Scholar
  51. 51.
    Yoneda, K., Yamamoto, T., Ueta, E., and Osak, T., Cancer Lett., 1999, vol. 137, p. 17.CrossRefGoogle Scholar
  52. 52.
    Moehler, M., Teufe, A., and Galle, P.R., Recent Results Cancer Res., 2005, vol. 165, p. 250.CrossRefGoogle Scholar
  53. 53.
    Goldberg, R.M., Sargen, D.J., Morton, R.F., Fuchs, C.S., Ramanathan, R.K., Williamson, S.K., Findlay, B.P., Pito, H.C., and Alberts, S., J. Clin. Oncol., 2006, vol. 24, p. 3347.CrossRefGoogle Scholar
  54. 54.
    Pohl, A., Lurje, G., Manegold, P.C., and Lenz, H.J., Adv. Drug Delivery Rev., 2009, vol. 61, p. 375.CrossRefGoogle Scholar
  55. 55.
    Yarden, Y., Baselga, J., and Miles, D., Semin. Oncol., 2004, vol. 31, p. 6.CrossRefGoogle Scholar
  56. 56.
    Gunzburg, W.H., Lohr, M., and Salmons, B., Expert Opin. Invest. Drugs, 2002, vol. 11, p. 769.CrossRefGoogle Scholar
  57. 57.
    Nishiyama, M. and Eguchi, H., Adv. Drug Delivery Rev., 2009, vol. 61, p. 402.CrossRefGoogle Scholar
  58. 58.
    El-Hammadi, M.M., Delgado, Á.V., Melguizo, C., Prados, J.C., and Arias, J.L., Int. J. Pharm., 2017, vol. 516, nos. 1–2, p. 61.CrossRefGoogle Scholar
  59. 59.
    Li, H.L., He, Y.X., Gao, Q.H., and Wu, G.Z., Mol. Med. Rep., 2014, vol. 9, no. 3, p. 786.CrossRefGoogle Scholar
  60. 60.
    Saranya, N., Moorthi, A., Saravanan, S., Devi, M.P., and Selvamurugan, N., Int. J. Biol. Macromol., 2011, vol. 48, p. 234.CrossRefGoogle Scholar
  61. 61.
    Mansouri, S., Lavigne, P., Corsi, K., Benderdour, M., Beaumont, E., and Fernandes, J.C., Eur. J. Pharm. Biopharm., 2004, vol. 57, p. 1.CrossRefGoogle Scholar
  62. 62.
    Chung, Y.C., Kuo, C.L., and Chen, C.C., Bioresour. Technol., 2005, vol. 96, p. 1473.CrossRefGoogle Scholar
  63. 63.
    Sun, H., Chang, M.Y.Z., Cheng, W.I., Wang, Q., Commisso, A., Capeling, M., Wu, Y., and Cheng, C., Acta Biomater., 2017, vol. 64, p. 290.CrossRefGoogle Scholar
  64. 64.
    Voulgari, E., Bakandritsos, A., Galtsidis, S., Zoumpourlis, V., Burke, B.P., Clemente, G.S., Cawthorne, C., Archibald, S.J., Tuček, J., Zboril, R., Kantarelou, V., Karydas, A.G., and Avgoustakis, K., J. Controlled Release, 2016, vol. 243, p. 342.CrossRefGoogle Scholar
  65. 65.
    Wojtkowiak, J.W., Mol. Pharm., 2011, vol. 8, p. 2032.CrossRefGoogle Scholar
  66. 66.
    Lal, N., Dubey, J., Gaur, P., Verma, N., and Verma, A., Mater. Sci. Eng., C, 2017, vol. 79, p. 491.CrossRefGoogle Scholar
  67. 67.
    Conzatti, G., Faucon, D., Castel, M., Ayadi, F., Cavalie, S., and Tour, A., Carbohydr. Polymers, 2017, vol. 172, p. 142.CrossRefGoogle Scholar
  68. 68.
    Stoyanova, E., Petrov, P., Karadjova, I., Momekov, G., and Koseva, N., Polymer J., 2017, vol. 49, p. 607.CrossRefGoogle Scholar
  69. 69.
    Wang, Q., Xie, X., Zhang, X., Zhang, J., and Wang, A., Int. J. Biol. Macromol., 2010, vol. 46, p. 356.CrossRefGoogle Scholar
  70. 70.
    Bayazit, M.K., Clarke, L.S., Coleman, K.S., and Clarke, N., J. Am. Chem. Soc., 2010, vol. 132, p. 15814.CrossRefGoogle Scholar
  71. 71.
    Wu, H., Jin, H., Wang, C., Zhang, Z., Ruan, H., Sun, L., Yang, C., Li, Y., Qin, W., and Wang, C., ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 11, p. 9426.CrossRefGoogle Scholar
  72. 72.
    Lu, S., Xu, L., Kang, E.T., Mahendran, R., Chiong, E., and Neoh, K.G., Eur. J. Pharm. Sci., 2016, vol. 84, p. 103.CrossRefGoogle Scholar
  73. 73.
    Ganji, F., Vasheghani-Farahani, S., and Vasheghani-Farahani, E., Iran. Polym. J., 2010, vol. 19, p. 375.Google Scholar
  74. 74.
    Zhou, Z., Jafari, M., Sriram, V., Kim, J., Lee, J.Y., Ruiz-Torres, S.J., and Waltz, S.E., Mol. Pharm., 2017, vol. 14, no. 12, p. 4551.CrossRefGoogle Scholar
  75. 75.
    Zhou, Z., Kennell, C., Jafari, M., Lee, J.Y., Ruiz-Torres, S.J., Waltz, S.E., and Lee, J.H., Int. J. Pharm., 2017, vol. 530, nos. 1–2, p. 300.CrossRefGoogle Scholar
  76. 76.
    He, Y., Su, Z., Xue, L., Xu, H., and Zhang, C., J. Controlled Release, 2016, vol. 229, p. 80.CrossRefGoogle Scholar
  77. 77.
    Abdel, NourA.M., Ringot, D., Gueant, J.L., and Chango, A., Carcinogenesis, 2007, vol. 28, p. 2291.CrossRefGoogle Scholar
  78. 78.
    Low, P.S., Henne, W.A., and Doorneweerd, D.D., Acc. Chem. Res., 2007, vol. 41, p. 120.CrossRefGoogle Scholar
  79. 79.
    Zhang, H., Li, F., Yi, J., Gu, C., Fan, L., Qiao, Y., Tao, Y., Cheng, C., and Wu, H., Eur. J. Pharm. Sci., 2011, vol. 42, no. 5, p. 517.CrossRefGoogle Scholar
  80. 80.
    Scomparin, A., Salmaso, S., Bersani, S., Satchi-Fainaro, R., and Caliceti, P., Eur. J. Pharm. Sci., 2011, vol. 42, no. 5, p. 547.CrossRefGoogle Scholar
  81. 81.
    Hu, X., Ning, P., Zhang, R., Yang, Y., Li, L., and Xiao, X., Int. J. Clin. Exp. Med., 2016, vol. 9, no. 9, p. 17195.Google Scholar
  82. 82.
    Kasprzak, A., Grudzinski, I.P., Bamburowicz-Klimkowska, M., Parzonko, A., Gawlak, M., and Poplawska, M., Macromol. Biosci., 2018, vol. 18, no. 2. doi  https://doi.org/10.1002/mabi.201700289
  83. 83.
    Du, B., Gu, X., Han, X., Ding, G., Wang, Y., Li, D., Wang, E., and Wang, J., Chem. Med. Chem., 2017, vol. 12, no. 21, p. 1768.CrossRefGoogle Scholar
  84. 84.
    Evans, J.C., Malhotra, M., Sweeney, K., Darcy, R., Nelson, C.C., Hollier, B.G., and O’Driscoll, C.M., Int. J. Pharm., 2017, vol. 532, no. 1, p. 511.CrossRefGoogle Scholar
  85. 85.
    Lai, C., Yu, X., Zhuo, H., Zhou, N., Xie, Y., He, J., Peng, Y., Xie, X., Luo, G., Zhou, S., Zhao, Y., and Lu, X., J. Biomed. Nanotechnol., 2014, vol. 10, no. 12, p. 3576.CrossRefGoogle Scholar
  86. 86.
    Duan, S., Song, M., He, J., Zhou, N., Zhou, S., Zhao, J., Fang, Y., Yi, P., Huang, X., Luo, G., Lai, C., Yu, X., Zhang, Z., Xie, Y., Zhao, Y., and Lu, X., J. Biomed. Nanotechnol., 2016, vol. 12, no. 4, p. 700.CrossRefGoogle Scholar
  87. 87.
    Xu, L., Yeudall, W.A., and Yang, H., Acta Biomater., 2017, vol. 57, p. 251.CrossRefGoogle Scholar
  88. 88.
    O’Shannessy, D.J., Somers, E.B., Maltzman, J., Smale, R., and Fu, Y.-S., SpringerPlus, 2012, vol. 1, p. 22.CrossRefGoogle Scholar
  89. 89.
    Lutz, R.J., Transl. Cancer Res., 2015, vol. 4, no. 1, p. 118.Google Scholar
  90. 90.
    Scomparin, A., Salmaso, S., Eldar-Boock, A., Ben-Shushan, D., Ferber, S., Tiram, G., Shmeeda, H., Landa-Rouben, N., Leor, J., Caliceti, P., Gabizon, A., and Satchi-Fainaro, R., J. Controlled Release, 2015, vol. 208, p. 106.CrossRefGoogle Scholar
  91. 91.
    Shen, J., Yan, B., Li, T., Long, Y., Li, N., and Ye, M., Soft Matter, 2012, vol. 8, p. 1831.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Privolzhsky Research Medical UniversityNizhny NovgorodRussia

Personalised recommendations