Advertisement

Review Journal of Chemistry

, Volume 5, Issue 3, pp 193–214 | Cite as

Formation of dense electrolytes based on BaCeO3 and BaZrO3 for application in solid oxide fuel cells: The role of solid-state reactive sintering

  • D. A. MedvedevEmail author
  • A. A. Murashkina
  • A. K. Demin
Article

Abstract

Methods of synthesis and formation of a high-dense ceramic prepared from barium cerate and zirconate, which is applied as electrolyte in solid oxide fuel cells, are considered in the present work. The main attention is devoted to the relatively new strategy of solid-state reactive sintering method, which consists in the introduction of small amounts of sintering additives to initial precursors. Analysis of published data on the effect of sintering additives on the physicochemical and transport properties of proton-conducting electrolytes is carried out.

Keywords

proton-conducting electrolytes solid oxide fuel cells (SOFC) sintering additives BaCeO3 BaZrO3 densification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Muncha, W., Kreuer, K.-D., Seifert, G., and Maier, J., Solid State Ionics, 2000, vol. 136-137, p. 183.Google Scholar
  2. 2.
    Colomban, Ph., Fuel Cells, 2013, vol. 13, no. 1, p. 6.Google Scholar
  3. 3.
    Iwahara, H., Esaka, T., Uchida, H., and Maeda, N., Solid State Ionics, 1981, vols. 3–4, p. 359.Google Scholar
  4. 4.
    Iwahara, H., Uchida, H., and Tanaka, S., Solid State Ionics, 1983, vols. 9–10, no. 2, p. 1021.Google Scholar
  5. 5.
    Tarasova, N. and Animitsa, I., Solid State Ionics, 2014, vol. 264, p. 69.Google Scholar
  6. 6.
    Kochetova, N.A., Spesivtseva, I.V., and Animitsa, I.E., Russ. J. Electrochem., 2013, vol. 49, no. 2, p. 176.Google Scholar
  7. 7.
    Norby, T. and Magraso, A., J. Power Sources, 2015, vol. 282, p. 28.Google Scholar
  8. 8.
    Huse, M., Norby, T., and Haugsrud, R., Int. J. Hydrogen Energy, 2012, vol. 37, no. 9, p. 8004.Google Scholar
  9. 9.
    Omata, T., Ikeda, K., Tokashiki, R., and Otsuka-Yao-Matsuo, S., Solid State Ionics, 2004, vol. 167, nos. 3–4, p. 389.Google Scholar
  10. 10.
    Ruiz-Trejo, E. and Kilner, J.A., J. Appl. Electrochem., 2009, vol. 39, no. 4, p. 523.Google Scholar
  11. 11.
    Medvedev, D., Murashkina, A., Pikalova, E., Podias, A., Demin, A., and Tsiakaras, P., Prog. Mater. Sci., 2014, vol. 60, p. 72.Google Scholar
  12. 12.
    Taniguchi, N., Kuroha, T., Nishimura, C., and Iijima, K., Solid State Ionics, 2005, vol. 176, nos. 39–40, p. 2979.Google Scholar
  13. 13.
    Bi, L., Boulfrad, S., and Traversa, E., Chem. Soc. Rev., 2014, vol. 43, p. 8255.Google Scholar
  14. 14.
    Zuo, C., Lee, T.H., Dorris, S.E., Balachandran, U., and Liu, M., J. Power Sources, 2006, vol. 159, no. 2, p. 1291.Google Scholar
  15. 15.
    Yin, J., Wang, X., Xu, J., Wang, H., Zhang, F., and Ma, G., Solid State Ionics, 2011, vol. 185, no. 1, p. 6.Google Scholar
  16. 16.
    Li, J., Luo, J.-L., Chuang, K.T., and Sanger, A.R., Electrochim. Acta, 2008, vol. 53, no. 10, p. 3701.Google Scholar
  17. 17.
    Fu, X.-Z., Luo, J.-L., Sanger, A.R., Luo, N., and Chuang, K.T., J. Power Sources, 2010, vol. 195, no. 9, p. 2659.Google Scholar
  18. 18.
    Kreuer, K.D., Annu. Rev. Mater. Res., 2003, vol. 33, p. 333.Google Scholar
  19. 19.
    Bi, L. and Traversa, E., J. Mater. Res., 2014, vol. 29, no. 1, p. 1.Google Scholar
  20. 20.
    Shao, Z., Zhou, W., and Zhu, Z., Prog. Mater. Sci., 2012, vol. 57, p. 804.Google Scholar
  21. 21.
    Makovec, D., Samardija, Z., and Kolar, D., J. Am. Ceram. Soc., 1997, vol. 80, no. 12, p. 3145.Google Scholar
  22. 22.
    He, T., Jia, C.L., Ehrhart, P., and Meuffels, P., Solid State Ionics, 1996, vol. 89, nos. 1–2, p. 9.Google Scholar
  23. 23.
    Pasierb, P., Wierzbicka, M., Komornicki, S., and Rekas, M., J. Power Sources, 2009, vol. 194, no. 1, p. 31.Google Scholar
  24. 24.
    Coors, W.G. and Readey, D.W., J. Am. Ceram. Soc., 2002, vol. 85, no. 11, p. 2637.Google Scholar
  25. 25.
    Wang, J.-X., Li, L.-P., Campbell, B.J., Lv, Z., Ji, Y., Xue, Y.-F., and Su, W.-H., Mater. Chem. Phys., 2004, vol. 86, no. 1, p. 150.Google Scholar
  26. 26.
    Qiu, L.-G., Ma, G.-L., and Wen, D.-J., Chin. J. Chem., 2005, vol. 23, no. 12, p. 1641.Google Scholar
  27. 27.
    Taniguchi, N., Hatoh, K., Niikura, J., Gamo, T., and Iwahara, H., Solid State Ionics, 1992, vols. 53–56, no. 2, p. 998.Google Scholar
  28. 28.
    Tomito, A., Hibino, T., Suzuki, M., and Sano, M.,. J. Mater. Sci., 2004, vol. 39, no. 7, p. 2493.Google Scholar
  29. 29.
    Lyagaeva, Yu.G., Medvedev, D.A., Demin, A.K., Yaroslavtseva, T.V., Plaksin, S.V., and Porotnikova, N.M., Semiconductors, 2014, vol. 48, no. 10, p. 1353.Google Scholar
  30. 30.
    Kreuer, K.D., Adams, St., Munch, W.W., Fuchs, A., Klock, U., and Maier, J., Solid State Ionics, 2001, vol. 145, nos. 1–4, p. 295.Google Scholar
  31. 31.
    Schober, T., Bohn hg, Solid State Ionics, 2000, vol. 127, nos. 3–4, p. 351.Google Scholar
  32. 32.
    Duval, S.B.C., Holtappels, P., Vogt, U.F., Pomjakushina, E., Conder, K., Stimming, U., and Graule, T., Solid State Ionics, 2007, vol. 178, nos. 25–26, p. 1437.Google Scholar
  33. 33.
    Ketzial, J.S.S.J., Radhika, D., and Nesaraj, A.S., Int. J. Industr. Chem., 2013, vol. 4, p. 18.Google Scholar
  34. 34.
    Chen, F., Sorensen, O.T., Meng, G., and Peng, D., Solid State Ionics, 1997, vol. 100, nos. 1–2, p. 63.Google Scholar
  35. 35.
    Chen, F.L., Sorensen, O.T., Meng, G.Y., and Peng, D.K., J. Therm. Anal. Calorim., 1997, vol. 49, no. 3, p. 1255.Google Scholar
  36. 36.
    Orlov, A.V., Shlyakhtin, O.A., Vinokurov, A.L., Knotko, A.V., and Tret’yakov, Yu.D., Inorg. Mater., 2005, vol. 41, no. 11, p. 1194.Google Scholar
  37. 37.
    Zhong, Z., Solid State Ionics, 2007, vol. 178, nos. 3–4, p. 213.Google Scholar
  38. 38.
    Flint, S.D. and Slade, R.C.T., Solid State Ionics, 1995, vol. 77, p. 215.Google Scholar
  39. 39.
    Cai, J., Laubernds, K., Galasso, F.S., and Suib, S.L., J. Am. Ceram. Soc., 2005, vol. 88, no. 10, p. 2729.Google Scholar
  40. 40.
    Chen, F., Wang, P., Sorensen, O.T., Meng, G., and Peng, D., J. Mater. Chem., 1997, vol. 7, no. 8, p. 1533.Google Scholar
  41. 41.
    Koferstein, R., Jager, L., and Ebbinghaus, S.G., J. Mater. Sci., 2010, vol. 45, no. 23, p. 6521.Google Scholar
  42. 42.
    Guo, Y., Lin, Y., Ran, R., and Shao, Z., J. Power Sources, 2009, vol. 193, no. 2, p. 400.Google Scholar
  43. 43.
    Lopes, F.W.B., Arab, M., Macedo, H.P., Pereira de Souza, C., Fernandes de Souza, J., and Gavarri, J.R, Powder Technol., 2012, vol. 219, p. 186.Google Scholar
  44. 44.
    Xu, J.-H., Xiang, J., Ding, H., Yu, T.-Q., Li, J.-L., Li, Z.-G., Yang, Y.-W., and Shao, X.-L., J. Alloys Compd., 2013, vol. 551, p. 333.Google Scholar
  45. 45.
    Zhang, L. and Yang, W., Int. J. Hydrogen Energy, 2012, vol. 37, no. 10, p. 8635.Google Scholar
  46. 46.
    Boskovic, S.B., Matovic, B.Z., Vlajic, M.D., and Kristic, V.D., Ceram. Int., 2007, vol. 33, no. 1, p. 89.Google Scholar
  47. 47.
    Chiodellia, G., Malavasi, L., Tealdi, C., Barison, S., Battagliarin, M., Doubova, L., Fabrizio, M., Mortalo, C., and Gerbasi, R, J. Alloys Compd., 2009, vol. 470, nos. 1–2, p. 477.Google Scholar
  48. 48.
    Jacquin, M., Jing, Y., Essoumhi, A., Taillades, G., Jones, D.J., and Roziere, J., J. New Mater. Electrochem. Syst., 2007, vol. 10, no. 4, p. 243.Google Scholar
  49. 49.
    Princivalle, A., Martina, G., Viazzia, C., Guizarda, C., Grunbaumb, N., and Dessemond, L., J. Power Sources, 2011, vol. 196, no. 22, p. 9238.Google Scholar
  50. 50.
    Su, X.-T., Yan, Q.-Z., Ma, X.-H., Zhang, W.-F., and Ge, C.-C., Solid State Ionics, 2006, vol. 177, nos. 11–12, p. 1041.Google Scholar
  51. 51.
    Medvedev, D., Maragou, V., Pikalova, E., Demin, A., and Tsiakaras, P., J. Power Sources, 2013, vol. 221, p. 217.Google Scholar
  52. 52.
    Meng, X., Yang, N., Song, J., Tan, X., Ma, Z.-F., and Li, K., Int. J. Hydrogen Energy, 2011, vol. 36, no. 20, p. 13067.Google Scholar
  53. 53.
    Barison, S., Battagliarin, M., Cavallin, T., Daolio, S., Doubova, L., Fabrizio, M., Mortalo, C., Boldrini, S., and Gerbasi, R., Fuel Cells, 2008, vol. 8, no. 5, p. 360.Google Scholar
  54. 54.
    Barison, S., Battagliarin, M., Cavallin, T., Doubova, L., Fabrizio, M., Mortalo, C., Boldrini, S., Malavasi, L., and Gerbasi, R., J. Mater. Chem., 2008, vol. 18, no. 42, p. 5120.Google Scholar
  55. 55.
    Kumar, H.P., Vijayakumar, C., George, C.N., Solomon, S., Jose, R., Thomas, J.K., and Koshy, J., J. Alloys Compd., 2008, vol. 458, nos. 1–2, p. 528.Google Scholar
  56. 56.
    Iguchi, F., Yamada, T., Sata, N., Tsurui, T., and Yugami, H., Solid State Ionics, 2006, vol. 177, nos. 26–32, p. 2381.Google Scholar
  57. 57.
    Zhang, T., Hing, P., Huang, H., and Kilner, J., J. Eur. Ceram. Soc., 2002, vol. 22, no. 1, p. 27.Google Scholar
  58. 58.
    Tianshu, Z., Hing, P., Huang, H., and Kilner, J., J. Mater. Process. Technol., 2001, vol. 113, nos. 1–3, p. 463.Google Scholar
  59. 59.
    Coster, M., Arnould, X., Chermant, J.L., Chermant, L., and Chartier, T., J. Eur. Ceram. Soc., 2005, vol. 25, no. 15, p. 3427.Google Scholar
  60. 60.
    Dong, Y., Hampshire, S., Zhou, J., and Meng, G., Int. J. Hydrogen Energy, 2011, vol. 36, no. 8, p. 5054.Google Scholar
  61. 61.
    Hong, J.-E., Ida, S., and Ishihara, T., J. Power Sources, 2014, vol. 259, p. 282.Google Scholar
  62. 62.
    Ishihara, T., Ishikawa, S., Hosoi, K., Nishiguchi, H., and Takita, Y., Solid State Ionics, 2004, vol. 175, nos. 1–4, p. 319.Google Scholar
  63. 63.
    Lee, J.-S., Choi, K.-H., Ryu, B.-K., Shin, B.-C., and Kim, I.-S., Ceram. Int., 2004, vol. 30, no. 5, p. 807.Google Scholar
  64. 64.
    Fagg, D.P., Abrantes, J.C.C., Perez-Coll, D., Nunez, P., Kharton, V.V., and Frade, J.R., Electrochim. Acta, 2003, vol. 48, no. 8, p. 1023.Google Scholar
  65. 65.
    Shimura, T., Tanaka, H.I., Matsumoto, H., and Yogo, T., Solid State Ionics, 2005, vol. 176, nos. 39–40, p. 2945.Google Scholar
  66. 66.
    Babilo, P. and Haile, S.M., J. Am. Ceram. Soc., 2005, vol. 88, no. 9, p. 2362.Google Scholar
  67. 67.
    German, R.M., Suri, P., and Park, S.J., J. Mater. Sci., 2009, vol. 44, no. 1, p. 1.Google Scholar
  68. 68.
    Nikodemski, S., Tong, J., and O’Hayre, R., Solid State Ionics, 2013, vol. 253, p. 201.Google Scholar
  69. 69.
    Gorbova, E., Maragou, V., Medvedev, D., Demin, A., and Tsiakaras, P., J. Power Sources, 2008, vol. 181, no. 2, p. 292.Google Scholar
  70. 70.
    Park, I., Kim, J., Choi, J., Lee, H., Park, J., and Shin, D., Int. J. Hydrogen Energy, 2013, vol. 38, no. 18, p. 7423.Google Scholar
  71. 71.
    Yang, C.-F. and Lo, S.-H., Mater. Res. Bull., 1997, vol. 32, no. 12, p. 1713.Google Scholar
  72. 72.
    Roth, R.S., Davis, K.L., and Dennis, J.R., Adv. Ceram. Mater., 1987, vol. 2, no. 3B, p. 303.Google Scholar
  73. 73.
    Klinkova, L.A., Nikolaichik, V.I., Barkovskii, N.V., and Fedotov, V.K., Bull. Rus. Acad. Sci.: Phys., 2009, vol. 73, no. 8, p. 1104.Google Scholar
  74. 74.
    Klinkova, L.A., Nikolaichik, V.I., Barkovskii, N.V., and Fedotov, V.K., Phys. C, 2010, vol. 470, no. 22, p. 2067.Google Scholar
  75. 75.
    Zhang, W., Osamura, K., and Ochiai, S., J. Am. Ceram. Soc., 1990, vol. 73, no. 7, p. 1958.Google Scholar
  76. 76.
    Ananyev, M., Medvedev, D., Gavrilyuk, A., Mitri, S., Demin, A., Malkov, V., and Tsiakaras, P., Electrochim. Acta, 2014, vol. 125, p. 371.Google Scholar
  77. 77.
    Gao, D. and Guo, R., J. Alloys Compd., 2010, vol. 493, nos. 1–2, p. 288.Google Scholar
  78. 78.
    Amsif, M., Marrero-Lopez, D., Ruiz-Morales, J.C., Savvin, S.N., and Nunez, P., J. Power Sources, 2011, vol. 196, no. 22, p. 9154.Google Scholar
  79. 79.
    Fisher, J.G., Kim, D.-H., Lee, S., Nguyen, D., and Lee, J.-S., J. Ceram. Process. Res., 2013, vol. 14, no. 6, p. 703.Google Scholar
  80. 80.
    Medvedev, D., Maragou, V., Zhuravleva, T., Demin, A., Gorbova, E., and Tsiakaras, P., Solid State Ionics, 2011, vol. 182, no. 1, p. 41.Google Scholar
  81. 81.
    Ma, Q.L., Gao, J.F., Zhou, D.Y., Lin, Y.J., Yan, R.Q., and Meng, G.Y., Adv. Appl. Ceram., 2008, vol. 107, p. 14.Google Scholar
  82. 82.
    Azimova, M.A. and McIntosh, S., Solid State Ionics, 2009, vol. 180, nos. 2–3, p. 160.Google Scholar
  83. 83.
    Azimova, M.A. and McIntosh, S., J. Electrochem. Soc., 2010, vol. 157, no. 10, p. B1397.Google Scholar
  84. 84.
    Yang, L., Wang, S., Lou, X., and Liu, M., Int. J. Hydrogen Energy, 2011, vol. 36, no. 3, p. 2266.Google Scholar
  85. 85.
    Suresh, A., Basu, J., Carter, C.B., Sammes, N., and Wilhite, B.A., J. Mater. Sci., 2012, vol. 42, no. 12, p. 3215.Google Scholar
  86. 86.
    Basu, J., Suresh, A., Wilhite, B.A., and Carter, C.B., J. Eur. Ceram. Soc., 2011, vol. 31, no. 8, p. 1421.Google Scholar
  87. 87.
    Ricote, S. and Bonanos, N., Solid State Ionics, 2010, vol. 181, nos. 15–16, p. 694.Google Scholar
  88. 88.
    Tong, J., Clark, D., Bernau, L., Subramaniyan, A., and O’Hayre, R., Solid State Ionics, 2010, vol. 181, nos. 33–34, p. 1486.Google Scholar
  89. 89.
    Tong, J., Clark, D., Hoban, M., and O’Hayre, R., Solid State Ionics, vol. 181, nos. 11–12, p. 496.Google Scholar
  90. 90.
    Gorbova, E., Maragou, V., Medvedev, D., Demin, A., and Tsiakaras, P., Solid State Ionics, 2008, vol. 179, nos. 21–26, p. 887.Google Scholar
  91. 91.
    Caldes, M.T., Kravchyk, K.V., Benamira, M., Besnard, N., Joubert, O., Bohnke, O., Gunes, V., Jarry, A., and Dupre, N., ECS Trans., 2012, vol. 45, no. 1, p. 143.Google Scholar
  92. 92.
    Liu, Y., Yang, L., Liu, M., Tang, Z., and Liu, M., J. Power Sources, 2011, vol. 196, no. 23, p. 9980.Google Scholar
  93. 93.
    Costa, R., Grunbaum, N., Berger, M.-H., Dessemond, L., and Thorel, A., Solid State Ionics, 2009, vol. 180, nos. 11–13, p. 891.Google Scholar
  94. 94.
    Lander, J.J., J. Am. Chem. Soc., 1951, vol. 73, no. 6, p. 2450.Google Scholar
  95. 95.
    Guo, Y., Ran, R., and Shao, Z., Int. J. Hydrogen Energy, 2010, vol. 35, no. 11, p. 5611.Google Scholar
  96. 96.
    Zhang, C., Zhao, H., Xu, N., Li, X., and Chen, N., Int. J. Hydrogen Energy, 2009, vol. 36, no. 6, p. 2739.Google Scholar
  97. 97.
    Peng, C., Melnik, J., Luo, J.-L., Sanger, A.R., and Chuang, K.T., Solid State Ionics, 2010, vol. 181, nos. 29–30, p. 1372.Google Scholar
  98. 98.
    Wang, H., Peng, R., Wu, X., Hu, J., and Xia, C., J. Am. Ceram. Soc., 2009, vol. 92, no. 11, p. 2623.Google Scholar
  99. 99.
    Tao, S. and Irvine, J.T.S., Adv. Mater., 2006, vol. 18, no. 12, p. 1581.Google Scholar
  100. 100.
    Amsif, M., Marrero-Lopez, D., Ruiz-Morales, J.C., Savvin, S.N., and Nunez, P., J. Eur. Cearm. Soc., 2014, vol. 34, no. 6, p. 1553.Google Scholar
  101. 101.
    Pasierb, P., Drozdz-Ciesla, E., and Rekas, M., J. Power Sources, 2008, vol. 181, no. 1, p. 17.Google Scholar
  102. 102.
    Tsai, C.-L., Kopczyk, M., Smith, R.J., and Schmidt, V.H., Solid State Ionics, 2010, vol. 181, nos. 23–24, p. 1083.Google Scholar
  103. 103.
    Tu, C.-S., Huang, C.-C., Lee, S.C., Chien, R.R., Schmid, V.H., and Tsai, C.-L., Solid State Ionics, 2010, vol. 181, nos. 37–38, p. 1654.Google Scholar
  104. 104.
    Jiang, T., Liu, Y., Wang, Z., Sun, W., Qiao, J., and Sun, K., J. Power Sources, 2014, vol. 248, p. 70.Google Scholar
  105. 105.
    Mirfakhraei, B., Ramezanipour, F., Paulson, S., Birss, V., and Thangadurai, V., Front. Energy Res., 2014, vol. 2, no. 9.Google Scholar
  106. 106.
    Kim E., Yamazaki Y., Haile S.M., and Yoo H.-I., Solid State Ionics, 2015 (in press).Google Scholar
  107. 107.
    Park, J.-S., Lee, J.-H., Lee, H.-W., and Kim, B.-K., Solid State Ionics, 2011, vol. 192, no. 1, p. 88.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • D. A. Medvedev
    • 1
    • 2
    Email author
  • A. A. Murashkina
    • 3
  • A. K. Demin
    • 1
  1. 1.Laboratory of Electrochemical Devices Based on Solid Oxide Protic Electrolytes, Institute of High-Temperature Electrochemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Yeltsin Ural Federal UniversityYekaterinburgRussia
  3. 3.Physics DepartmentSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations