Biology Bulletin Reviews

, Volume 8, Issue 6, pp 509–517 | Cite as

Wolbachia Bacteria and Filarial Nematodes: Mutual Benefit and the Parasite’s Achilles’ Heel

  • E. V. ShaikevichEmail author
  • L. A. GanushkinaEmail author


The current information on symbiotic interrelations of the intracellular bacterium Wolbachia and filariae (parasites of human and animals), as well as evidence of the joint evolution of the symbiont and hosts, are discussed. Data on the absence of the joint distribution of this bacterium with its host in some Wolbachia supergroups are also presented. The results of morphological, genome, and transcriptomiс analyses obtained in the last ten years are provided. Insight into the biology and evolution of Wolbachia endosymbionts in the filarial organism, which were obtained by cytological, biochemical, and molecular methods, makes it possible to use the bacterium, which is obligate for filariae, in the treatment of human diseases.


symbiosis filariae Wolbachia pipientis 



This work was supported by the Russian Foundation for Basic Research, project no. 16-04-00091.


Сonflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.


  1. 1.
    Asplen, M.K., Bano, N., Brady, C.M., et al., Specialization of bacterial endosymbionts that protect aphids from parasitoids, Ecol. Entomol., 2014, vol. 39, pp. 736–739.CrossRefGoogle Scholar
  2. 2.
    Bain, O., Casiraghi, M., Martin, C., and Uni, S., The nematode Filarioidea: critical analysis linking molecular and traditional approaches, Parasite, 2008, vol. 15, pp. 342–348.CrossRefGoogle Scholar
  3. 3.
    Bandi, C., Anderson, T.J.C., Genchi, C., and Blaxter, M.L., Phylogeny of W. pipientis in filarial nematodes, Proc. R. Soc. Lond. B, 1998, vol. 265, pp. 2407–2413.CrossRefGoogle Scholar
  4. 4.
    Bennuru, S., Meng, Z., Ribeiro, J.M., et al., Stage-specific proteomic expression patterns of the human filarial parasite Brugia malayi and its endosymbiont Wolbachia, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 23, pp. 9649–9654. doi 10.1073/pnas.1011481108CrossRefGoogle Scholar
  5. 5.
    Bocková, E., Rudolf, I., Kočišová, A., et al., Dirofilaria repens microfilariae in Aedes vexans mosquitoes in Slovakia, Parasitol. Res., 2013, vol. 112, no. 10, pp. 3465–3470. doi 10.1007/s00436-013-3526-9Google Scholar
  6. 6.
    Bogacheva, A.S., Shaikevich, E.V., Rakova, V.M., and Ganushkina, L.A., The fauna of blood-sucking mosquitoes of the Nizhny Novgorod oblast, their infection with dyrophilia and endosymbiotic bacteria, Med. Parazitol., 2017, no. 1, pp. 43–47.Google Scholar
  7. 7.
    Bordenstein, S., Fitch, D., and Werren, J., Absence of Wolbachia in nonfilariid nematodes, J. Nematol., 2003, vol. 35, pp. 266–270.Google Scholar
  8. 8.
    Boussinesq, M., Kamgno, J., Pion, S.D., and Gardon, J., What are the mechanisms associated with post-ivermectin serious adverse events? Trends Parasitol., 2006, vol. 22, pp. 244–246.CrossRefGoogle Scholar
  9. 9.
    Brown, A.M.V., Wasala, S.K., Howe, D.K., et al., Genomic evidence for plant-parasitic nematodes as the earliest Wolbachia hosts, Sci. Rep., 2016, vol. 6, p. e34955. doi 10.1038/srep34955CrossRefGoogle Scholar
  10. 10.
    Brownlie, J.C. and Johnson, K.N., Symbiont-mediated protection in insect hosts, Trends Microbiol., 2009, vol. 17, pp. 348–354.CrossRefGoogle Scholar
  11. 11.
    Brownlie, J.C., Adamski, M., Slatko, B., and McGraw, E.A., Diversifying selection and host adaptation in two endosymbiont genomes, BMC Evol. Biol., 2007, vol. 7, p. 68.CrossRefGoogle Scholar
  12. 12.
    Casiraghi, M., Favia, G., Cancrini, G., et al., Molecular identification of Wolbachia from the filarial nematode Mansonella ozzardi, Parasitol. Res., 2001, vol. 87, no. 5, pp. 417–420. doi 10.1007/s004360000368CrossRefGoogle Scholar
  13. 13.
    Casiraghi, M., Werren, J.H., Bazzocchi, C., et al., dnaA gene sequences from Wolbachia pipientis support subdivision into supergroups and provide no evidence for recombination in the lineages infecting nematodes, Parasitologia, 2003, vol. 45, pp. 13–18.Google Scholar
  14. 14.
    Casiraghi, M., Bain, O., Guerrero, R., et al., Mapping the presence of Wolbachia pipientis on the phylogeny of filarial nematodes: evidence for symbiont loss during evolution, Int. J. Parasitol., 2004, vol. 34, pp. 191–203. doi 10.1016/j.ijpara.2003.10.004CrossRefGoogle Scholar
  15. 15.
    Chabaud, A.G. and Bain, O., The evolutionary expansion of the Spirurida, Int. J. Parasitol., 1994, vol. 24, pp. 1179–1201.CrossRefGoogle Scholar
  16. 16.
    Choi, Y.J., Lin, C.P., Ho, J.J., et al., A deep sequencing approach to comparatively analyze the transcriptome of lifecycle stages of the filarial worm, Brugia malayi, PLoS Neglected Trop. Dis., 2011, vol. 5, p. e1409. PMID doi 10.1371/journal.pntd.000140922180794CrossRefGoogle Scholar
  17. 17.
    Comandatore, F., Sassera, D., Montagna, M., et al., Phylogenomics and analysis of shared genes suggest a single transition to mutualism in Wolbachia of nematodes, Genome Biol. Evol., 2013, vol. 5, pp. 1668–1674. doi 10.1093/gbe/evt125CrossRefGoogle Scholar
  18. 18.
    Cotton, J.A., Bennuru, S., Grote, A., et al., The genome of Onchocerca volvulus, agent of river blindness, Nat. Microbiol., 2016, vol. 2, art. ID 16216. doi 10.1038/nmicrobiol.2016.216CrossRefGoogle Scholar
  19. 19.
    Darby, A.C., Armstrong, S.D., Bah, G.S., et al., Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis, Genome Res., 2012, vol. 22, no. 12, pp. 2467–2477.CrossRefGoogle Scholar
  20. 20.
    Desjardins, C.A., Cerqueira, G.C., Goldberg, J.M., et al., Genomics of Loa loa, a Wolbachia-free filarial parasite of humans, Nat. Genet., 2013, vol. 45, no. 5, pp. 495–500. doi 10.1038/ng.2585CrossRefGoogle Scholar
  21. 21.
    Douglas, A., Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera, Ann. Rev. Entomol., 1998, vol. 43, pp. 17–37.CrossRefGoogle Scholar
  22. 22.
    Dunning Hotopp, J.C., Lin, M., Madupu, R., et al., Comparative genomics of emerging human ehrlichiosis agents, PLoS Genet., 2006, vol. 2, no. 2, p. e21.CrossRefGoogle Scholar
  23. 23.
    Engelstädter, J. and Hurst, G.D.D., The ecology and evolution of microbes that manipulate host reproduction, Ann. Rev. Ecol. Evol. Syst., 2009, vol. 40, pp. 127–149. doi 10.1146/annurev.ecolsys.110308.120206Google Scholar
  24. 24.
    Fenn, K. and Blaxter, M., Quantification of Wolbachia bacteria in Brugia malayi throughout the nematode lifecycle, Mol. Biochem. Parasitol., 2004, vol. 137, pp. 361–364.CrossRefGoogle Scholar
  25. 25.
    Ferrari, J. and Vavre, F., Bacterial symbionts in insects or the story of communities affecting communities, Philos. Trans. R. Soc., B, 2011, vol. 366, pp. 1389–1400.Google Scholar
  26. 26.
    Ferree, P.M., Frydman, H.M., Li J.M., et al., Wolbachia utilizes host microtubules and dynein for anterior localization in the Drosophila oocyte, PLoS Pathog., 2005, vol. 1, p. e14.CrossRefGoogle Scholar
  27. 27.
    Ferri, E., Bain, O., Barbuto, M., et al., New insights into the evolution of Wolbachia infections in filarial nematodes inferred from a large range of screened species, PLoS One, 2011, vol. 6, p. e20843. doi 10.1371/journal.pone.0020843CrossRefGoogle Scholar
  28. 28.
    Fischer, K., Beatty, W.L., Jiang, D., et al., Tissue and stagespecific distribution of Wolbachia in Brugia malayi, PLoS Neglected Trop. Dis., 2011, vol. 5, p. e1174.CrossRefGoogle Scholar
  29. 29.
    Foster, J., Ganatra, M., Kamal, I., et al., The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode, PLoS Biol., 2005, vol. 3, no. 4, p. e121.CrossRefGoogle Scholar
  30. 30.
    Foster, J., Hoerauf, A., Slatko, B., and Taylor, M., The molecular biology, immunology and chemotherapy of Wolbachia bacterial endosymbionts of filarial nematodes, in Parasitic Nematodes: Molecular Biology, Biochemistry and Immunology, Kennedy, M. and Harnett, W., Eds., Wallingford: CABI, 2013, pp. 308–336.Google Scholar
  31. 31.
    Gerth, M., Gansauge, M.T., Weigert, A., and Bleidorn, C., Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic, Nat. Commun., 2014, vol. 5, p. e5117. doi 10.1038/ncomms6117CrossRefGoogle Scholar
  32. 32.
    Glowska, E., Dragun-Damian, A., Dabert, M., and Gerth, M., New Wolbachia supergroups detected in quill mites (Acari: Syringophilidae), Infect., Genet. Evol., 2015, vol. 30, p. e140. doi 10.1016/j.meegid.2014.12.019CrossRefGoogle Scholar
  33. 33.
    Godel, C., Kumar, S., Koutsovoulos, G., et al., The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets, FASEB J., 2012, vol. 26, no. 11, pp. 4650–4661.CrossRefGoogle Scholar
  34. 34.
    Goryacheva, I.I. and Andrianov, B.V., Biological effects of the symbiosis between insects and intracellular bacteria Wolbachia pipientis, Biol. Bull. Rev., 2016, vol. 6, no. 6, pp. 530–544.CrossRefGoogle Scholar
  35. 35.
    Grote, A., Lustigman, S., and Ghedin, E., Lessons from the genomes and transcriptomes of filarial nematodes, Mol. Biochem. Parasitol., 2017a, vol. 215, pp. 23–29. doi 10.1016/j.molbiopara.2017.01.004CrossRefGoogle Scholar
  36. 36.
    Grote, A., Voronin, D., Ding, T., et al., Defining Brugia malayi and Wolbachia symbiosis by stage-specific dual RNAseq, PLoS Neglected Trop. Dis., 2017b, vol. 11, no. 3, p. e0005357. doi 10.1371/journal.pntd.0005357CrossRefGoogle Scholar
  37. 37.
    Haegeman, A., Vanholme, B., Jacob, J., et al., An endosymbiotic bacterium in a plant-parasitic nematode: member of a new Wolbachia supergroup, Int. J. Parasitol., 2009, vol. 39, pp. 1045–1054. doi 10.1016/j.ijpara.2009.01.006CrossRefGoogle Scholar
  38. 38.
    Hilgenboecker, K., Hammerstein, P., Schlattmann, P., et al., How many species are infected with Wolbachia?—A statistical analysis of current data, FEMS Microbiol. Lett., 2008, vol. 281, no. 2, pp. 215–220.CrossRefGoogle Scholar
  39. 39.
    Ioannidis, P., Johnston, K.L., Riley, D.R., et al., Extensively duplicated and transcriptionally active recent lateral gene transfer from a bacterial Wolbachia endosymbiont to its host filarial nematode Brugia malayi, BMC Genomics, 2013, vol. 14, no. 1, pp. 1–17.CrossRefGoogle Scholar
  40. 40.
    Jha, R., Gangwar, M., Chahar, D., et al., Humans from Wuchereria bancrofti endemic area elicit substantial immune response to proteins of the filarial parasite Brugia malayi and its endosymbiont Wolbachia, Parasites Vectors, 2017, vol. 10, no. 1, p. 40. doi 10.1186/s13071-016-1963-xCrossRefGoogle Scholar
  41. 41.
    Koutsovoulos, G., Makepeace, B., Tanya, V.N., and Blaxter, M., Palaeosymbiosis revealed by genomic fossils of Wolbachia in a strongyloidean nematode, PLoS Genet., 2014, vol. 10, no. 6, p. e1004397. doi 10.1371/journal.pgen.1004397CrossRefGoogle Scholar
  42. 42.
    Kozek, W.J., Ultrastructure of the microfilaria of Dirofilaria immitis, J. Parasitol., 1971, vol. 57, pp. 1052–1067. doi 10.2307/3277865CrossRefGoogle Scholar
  43. 43.
    Kozek, W.J. and Marroquin, H.F., Intracytoplasmic bacteria in Onchocerca volvulus, Am. J. Trop. Med. Hyg., 1977, vol. 26, pp. 663–678.CrossRefGoogle Scholar
  44. 44.
    Kronefeld, M., Kampen, H., Sassnau, R., and Werner, D., Molecular evidence for the occurrence of Dirofilaria immitis, Dirofilaria repens, and Setaria tundra in mosquitoes from Germany, Parasite Vectors, 2014, vol. 7, p. 30.CrossRefGoogle Scholar
  45. 45.
    Landmann, F., Foster, J.M., Slatko, B., and Sullivan, W., Asymmetric Wolbachia segregation during early Brugia malayi embryogenesis determines its distribution in adult host tissues, PLoS Neglected Trop. Dis., 2010, vol. 4, p. e758.CrossRefGoogle Scholar
  46. 46.
    Landmann, F., Voronin, D., Sullivan, W., and Taylor, M.J., Anti-filarial activity of antibiotic therapy is due to extensive apoptosis after Wolbachia depletion from filarial nematodes, PLoS Pathog., 2011, vol. 7, p. e1002351.CrossRefGoogle Scholar
  47. 47.
    Landmann, F., Foster, J.M., Michalski, M.L., et al., Coevolution between an endosymbiont and its nematode host: Wolbachia asymmetric posterior localization and AP polarity establishment, PLoS Neglected Trop. Dis., 2014, vol. 8, no. 8, p. e3096. doi 10.1371/journal.pntd.0003096CrossRefGoogle Scholar
  48. 48.
    Lefoulon, E., Gavotte, L., Junker, K., et al., A new type F Wolbachia from Splendidofilariinae (Onchocercidae) supports the recent emergence of this supergroup, Int. J. Parasitol., 2012, vol. 42, pp. 1025–1036.CrossRefGoogle Scholar
  49. 49.
    Lefoulon, E., Bain, O., Makepeace, B.L., et al., Breakdown of coevolution between symbiotic bacteria Wolbachia and their filarial hosts, PeerJ., 2016, vol. 4, p. e1840.CrossRefGoogle Scholar
  50. 50.
    Li, Z. and Carlow, C.K., Characterization of transcription factors that regulate the type IV secretion system and riboflavin biosynthesis in Wolbachia of Brugia malayi, PLoS One, 2012, vol. 7, p. e51597.CrossRefGoogle Scholar
  51. 51.
    Lo, N., Casiraghi, M., Salati, E., et al., How many Wolbachia supergroups exist? Mol. Biol. Evol. 2002, vol. 19, pp. 341–346. doi 10.1093/oxfordjournals.molbev.a004087CrossRefGoogle Scholar
  52. 52.
    Luck, A.N., Anderson, K.G., McClung, C.M., et al., Tissue-specific transcriptomics and proteomics of a filarial nematode and its Wolbachia endosymbiont, BMC Genomics, 2015, vol. 16, p. 920. doi 10.1186/s12864-015-2083-2CrossRefGoogle Scholar
  53. 53.
    McCall, J., Jun, J.J., and Bandi, C., Wolbachia and the antifilarial properties of tetracycline. An untold story, Ital. J. Zool., 1999, vol. 66, pp. 7–10.CrossRefGoogle Scholar
  54. 54.
    McGarry, H.F., Egerton, G.L., and Taylor, M.J., Population dynamics of Wolbachia bacterial endosymbionts in Brugia malayi, Mol. Biochem. Parasitol., 2004, vol. 135, pp. 57–67.CrossRefGoogle Scholar
  55. 55.
    McLaren, D.J., Worms, M.J., Laurence, B.R., and Simpson, M.G., Microorganisms in filarial larvae (Nematoda), Trans. R. Soc. Trop. Med. Hyg., 1975, vol. 69, pp. 509–514. doi 10.1016/0035-9203(75)90110-8CrossRefGoogle Scholar
  56. 56.
    McNulty, S., Foster, J., Mitreva, M., et al., Endosymbiont DNA in endobacteria-free filarial nematodes indicates ancient horizontal genetic transfer, PLoS One, 2010, vol. 5, no. 6, p. e11029. doi 10.1371/journal.pone.0011029CrossRefGoogle Scholar
  57. 57.
    Osei-Atweneboana, M.Y., Awadzi, K., Attah, S.K., et al., Phenotypic evidence of emerging ivermectin resistance in Onchocerca volvulus, PLoS Neglected Trop. Dis., 2011, vol. 5, p. e998.CrossRefGoogle Scholar
  58. 58.
    Panteleev, D.Yu., Goryacheva, I.I., Andrianov, B.V., et al., The endosymbiotic bacterium Wolbachia enhances the nonspecific resistance to insect pathogens and alters behavior of Drosophila melanogaster, Russ. J. Genet., 2007, vol. 43, no. 9, pp. 1066–1069.CrossRefGoogle Scholar
  59. 59.
    Parazitarnye bolezni cheloveka (protozoozy i gel’mintozy). Rukovodstvo dlya vrachei (Parasitic Human Diseases(Protozoosis and Helminthiases): Manual for Physicians), Sergiev, V.P., Lobzin, Yu.V., and Kozlov, S.S., Eds., St. Petersburg: Foliant, 2008.Google Scholar
  60. 60.
    Pfarr, K., Foster, J., Slatko, B., et al., On the taxonomic status of the intracellular bacterium Wolbachia pipientis: should this species name include the intracellular bacteria of filarial nematodes, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 1677–1678.CrossRefGoogle Scholar
  61. 61.
    Rakova, V.M., Molecular and biological diagnostics of dirofilariasis in the organism of definitive host and carrier, Cand. Sci. (Biol.) Dissertation, Moscow, Sechenov First Moscow State Med. Univ., 2013, pp. 51–109.Google Scholar
  62. 62.
    Ramirez-Puebla, S.T., Servin-Garciduenas, L.E., Ormeno-Orrillo, E., et al., Species in Wolbachia? Proposal for the designation of ‘Candidatus Wolbachia bourtzisii,’ ‘Candidatus Wolbachia onchocercicola,’ ‘Candidatus Wolbachia blaxteri,’ ‘Candidatus Wolbachia brugii’, ‘Candidatus Wolbachia taylori,’ ‘Candidatus Wolbachia collembolicola’ and ‘Candidatus Wolbachia multihospitum’ for the different species within Wolbachia supergroups, Syst. Appl. Microbiol., 2015, vol. 38, pp. 390–399.CrossRefGoogle Scholar
  63. 63.
    Rao, R.U., Huang, Y., Abubucker, S., et al., Effects of doxycycline on gene expression in Wolbachia and Brugia malayi adult female worms in vivo, J. Biomed. Sci., 2012, vol. 19, p. 21.CrossRefGoogle Scholar
  64. 64.
    Sergiev, V.P., Supryaga, V.G., Bronshtein, A.M., et al., Human dirofilariasis in Russia: study results, Med. Parazitol. Parazit. Bolezni, 2014, no. 3, pp. 3–9.Google Scholar
  65. 65.
    Sironi, M., Bandi, C., Sacchi, L., et al., Molecular evidence for a close relative of the arthropod endosymbiont Wolbachia in a filarial worm, Mol. Biochem. Parasitol., 1995, vol. 74, pp. 223–227.CrossRefGoogle Scholar
  66. 66.
    Slatko, B.E., Taylor, M.J., and Foster, J.M., The Wolbachia endosymbiont as an anti-filarial nematode target, Symbiosis, 2010, vol. 51, pp. 55–65.CrossRefGoogle Scholar
  67. 67.
    Slatko, B.E., Luck, A.N., Dobson, S.L., and Foster, J.M., Wolbachia endosymbionts and human disease control, Mol. Biochem. Parasitol., 2014, vol. 195, pp. 88–95. doi 10.1016/j.molbiopara.2014.07.004CrossRefGoogle Scholar
  68. 68.
    Taylor, M.J., Makunde, W.H., McGarry, H.F., et al., Macrofilaricidal activity after doxycycline treatment of Wuchereria bancrofti: a double-blind, randomized placebo-controlled trial, Lancet, 2005, vol. 365, pp. 2116–2121.CrossRefGoogle Scholar
  69. 69.
    Taylor, M.J., Hoerauf, A., and Bockarie, M., Lymphatic filariasis and onchocerciasis, Lancet, 2010, vol. 376, pp. 1175–1185.CrossRefGoogle Scholar
  70. 70.
    Taylor, M.J., Voronin, D., Johnston, K.L., and Ford, L., Wolbachia filarial interactions, Cell Microbiol., 2013, vol. 15, pp. 520–526.CrossRefGoogle Scholar
  71. 71.
    Taylor, M.J., Hoerauf, A., Townson, S., et al., Anti-Wolbachia drug discovery and development: safe macrofilaricides for onchocerciasis and lymphatic filariasis, Parasitology, 2014, vol. 141, pp. 119–127.CrossRefGoogle Scholar
  72. 72.
    Tumolskaya, N.I., Pozio, E., Rakova, V.M., et al., Dirofilaria immitis in child from the Russian Federation, Parasite, 2016, vol. 23, p. 37.CrossRefGoogle Scholar
  73. 73.
    Werren, J.H., Baldo, L., and Clark, M.E., Wolbachia: master manipulators of invertebrate biology, Nat. Rev. Microbiol., 2008, vol. 6, pp. 741–751.CrossRefGoogle Scholar
  74. 74.
    Zakharov, I.A., Horizontal gene transfer into the genomes of insects, Russ. J. Genet., 2016, vol. 52, no. 7, pp. 702–707.CrossRefGoogle Scholar
  75. 75.
    Zug, R. and Hammerstein, P., Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts, Biol. Rev., 2015, vol. 90, pp. 89–111.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
  2. 2.Sechenov First Moscow State Меdical University Health of the Russian FederationMoscowRussia

Personalised recommendations