Advertisement

Biology Bulletin Reviews

, Volume 8, Issue 6, pp 497–508 | Cite as

HIF-1 as a Marker of Age-Related Diseases Associated with Tissue Hypoxia

  • E. S. Popravka
  • N. S. LinkovaEmail author
  • S. V. Trofimova
  • V. Kh. Khavinson
Article
  • 9 Downloads

Abstract

The data on the role of hypoxia-inducible factor, HIF-1, in the development of immunopathology (infectious, inflammatory, and autoimmune diseases), cancer (of the lung, brain, female reproductive system, urinary bladder, and pancreas), diabetes mellitus, and Alzheimer’s disease are analyzed. The data on the genes involving cell differentiation, apoptosis, and proliferation, the expression of which is regulated by HIF-1, are described. HIF-1 activates the expression of the telomerase gene and increases the replicative lifetime of human lung fibroblasts under hypoxic conditions. HIF-1 may be a molecular marker of cell aging and metabolism, as well as a potential therapeutic target for the treatment of age-related diseases.

Keywords:

HIF-1 hypoxia diabetes mellitus oncogenesis immunopathology neuropathology aging 

Notes

REFERENCES

  1. 1.
    Arany, Z., Foo, S.Y., and Ma, Y., HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1, Nature, 2008, vol. 451, pp. 1008–1112.CrossRefPubMedGoogle Scholar
  2. 2.
    Ashok, B.S., Ajith, T.A., and Sivanesan, S., Hypoxia-inducible factors as neuroprotective agent in Alzheimer’s disease, Clin. Exp. Pharmacol. Physiol., 2017, vol. 44, no. 3, pp. 327–334.CrossRefPubMedGoogle Scholar
  3. 3.
    Bell, E.L., Klimova, T.A., Eisenbart, J., et al., Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia, Mol. Cell Biol., 2007, vol. 27, pp. 5737–5745.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bhat, P.J., Darunte, L., Kareenhalli, V., et al., Can metabolic plasticity be a cause for cancer? Warburg–Waddington legacy revisited, Clin. Epigenet., 2011, vol. 2, no. 2, pp. 113–122.CrossRefGoogle Scholar
  5. 5.
    Birner, P., Schindl, M., Obermair, A., et al., Expression of hypoxiainducible factor 1alpha in epithelial ovarian tumors: its impact on prognosis and on response to chemotherapy, Clin. Cancer Res., 2001, vol. 7, no. 6, pp. 1661–1668.PubMedGoogle Scholar
  6. 6.
    Bos, R., van der Groep, P., Greijer, A.E., et al., Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma, Cancer, 2003, vol. 97, no. 6, pp. 1573–1581.CrossRefPubMedGoogle Scholar
  7. 7.
    Brouwer, E., Gouw, A.S., Posthumus, M.D., et al., Hypoxia inducible factor-1-alpha (HIF-1α) is related to both angiogenesis and inflammation in rheumatoid arthritis, Clin. Exp. Rheumatol., 2009, vol. 27, pp. 945–951.PubMedGoogle Scholar
  8. 8.
    Brownlee, M., Biochemistry and molecular cell biology of diabetic complications, Nature, 2001, vol. 414, pp. 813–820.CrossRefPubMedGoogle Scholar
  9. 9.
    Brüne, B. and Zhou, J., Nitric oxide and superoxide: interference with hypoxic signaling, Cardiovasc. Res., 2007, vol. 75, pp. 275–282.CrossRefPubMedGoogle Scholar
  10. 10.
    Campbell, E.L., Bruyninckx, W.J., Kelly, C.J., et al., Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation, Immunity, 2014, vol. 40, pp. 66–77.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Carrero, P., Okamoto, K., Coumailleau, P., et al., Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1α, Mol. Cell. Biol., 2000, vol. 20, pp. 402–415.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chang, E.I., Loh, S.A., Ceradini, D.J., et al., Age decreases endothelial progenitor cell recruitment through decreases in hypoxia-inducible factor 1α stabilization during ischemia, Circulation, 2007, vol. 116, pp. 2818–2829.CrossRefPubMedGoogle Scholar
  13. 13.
    Chen, X., Zhao, T., Huang, X., et al., Intermittent hypoxia maintains glycemia in streptozotocin-induced diabetic rats, Cell Stress Chaperones, 2016, vol. 21, pp. 515–522.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cheng, K.J., Bao, Y.Y., and Zhou, S.H., The role of hypoxia inducible factor in nasal inflammations, Eur. Rev. Med. Pharmacol. Sci., 2016, vol. 20, no. 24, pp. 5067–5076.PubMedGoogle Scholar
  15. 15.
    Crotty Alexander, L.E., Akong-Moore, K., Feldstein, S., et al., Myeloid cell HIF-1α regulates asthma airway resistance and eosinophil function, J. Mol. Med., 2013, vol. 91, pp. 637–644.CrossRefPubMedGoogle Scholar
  16. 16.
    Curtis, T.M., Gardiner, T.A., and Stitt, A.W., Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis, Eye, 2009, vol. 23, pp. 1496–1508.CrossRefPubMedGoogle Scholar
  17. 17.
    Dehne, N. and Brüne, B., HIF-1 in the inflammatory microenvironment, Exp. Cell Res., 2009, vol. 315, pp. 1791–1797.CrossRefPubMedGoogle Scholar
  18. 18.
    Deng, W., Ren, Y., Feng, X., et al., Hypoxia inducible factor-1α promotes mesangial cell proliferation in lupus nephritis, Am. J. Nephrol., 2014, vol. 40, pp. 507–515.CrossRefPubMedGoogle Scholar
  19. 19.
    Drevytska, T., Gavenauskas, B., Drozdovska, S., et al., HIF-3α mRNA expression changes in different tissues and their role in adaptation to intermittent hypoxia and physical exercise, Pathophysiology, 2012, vol. 19, no. 3, pp. 205–214.CrossRefPubMedGoogle Scholar
  20. 20.
    Elks, P.M., van Eeden, F.J., Dixon, G., et al., Activation of hypoxia-inducible factor-1α (HIF-1α) delays inflammation resolution by reducing neutrophil apoptosis and reverse migration in a zebrafish inflammation model, Blood, 2011, vol. 118, pp. 712–722.CrossRefPubMedGoogle Scholar
  21. 21.
    Epstein, A.C., Gleadle, J.M., McNeill, L.A., et al., C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation, Cell, 2001, vol. 107, pp. 43–54.CrossRefPubMedGoogle Scholar
  22. 22.
    Fang, H.Y., Hughes, R., Murdoch, C., et al., Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia, Blood, 2009, vol. 114, pp. 844–859.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Feng, C.C., Ye, Q.L., Zhu, Y., et al., Lack of association between the polymorphisms of hypoxia-inducible factor α (HIF1α) gene and SLE susceptibility in a Chinese population, Immunogenetics, 2014, vol. 66, pp. 9–13.CrossRefPubMedGoogle Scholar
  24. 24.
    Frede, S., Stockmann, C., Freitag, P., and Fandrey, J., Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-κB, Biochem. J., 2006, vol. 396, pp. 517–527.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Fukushima, S., Endo, M., Matsumoto, Y., et al., Hypoxia-inducible factor 1 alpha is a poor prognostic factor and potential therapeutic target in malignant peripheral nerve sheath tumor, PLoS One, 2017, vol. 12, no. 5, p. e0178064.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Goggins, B.J., Chaney, C., Radford-Smith, G.L., et al., Hypoxia and integrin-mediated epithelial restitution during mucosal inflammation, Front. Immunol., 2013, vol. 4, p. 272.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Goto, K., Sakamoto, J., Nakano, J., et al., Development and progression of immobilization-induced skin fibrosis through overexpression of transforming growth factor-β1 and hypoxic conditions in a rat knee joint contracture model, Connect. Tissue Res., 2017, pp. 1–11.Google Scholar
  28. 28.
    Grammas, P., Tripathy, D., Sanchez, A., et al., Brain microvasculature and hypoxia-related proteins in Alzheimer’s disease, Int. J. Clin. Exp. Pathol., 2011, vol. 4, no. 6, pp. 616–627.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Gu, Z., Jiang, Q., and Zhang, G., Extracellular signal-regulated kinase and c-Jun N terminal protein kinase in ischemic tolerance, Neuroreport, 2001, vol. 12, pp. 3487–3491.CrossRefPubMedGoogle Scholar
  30. 30.
    Guan, F., Lu, X.J., Li, C.-H., and Chen, J., Molecular characterization of mudskipper (Boleophthalmus pectinirostris) hypoxia-inducible factor-1α (HIF-1α) and analysis of its function in monocytes/macrophages, PLoS One, 2017, vol. 12, p. 5.Google Scholar
  31. 31.
    Gunaratnam, L. and Bonventre, J.V., HIF in kidney disease and development, J. Am. Soc. Nephrol., 2009, vol. 9, no. 20, pp. 1877–1887.CrossRefGoogle Scholar
  32. 32.
    Han, X., Sun, S., Zhao, M., et al., Celastrol stimulates hypoxia-inducible factor-1 activity in tumor cells by initiating the ROS/Akt/p70S6K signaling pathway and enhancing hypoxiainducible factor-1alpha protein synthesis, PLoS One, 2014, vol. 9, pp. 112–170.Google Scholar
  33. 33.
    He, L.Y., Li, L., Guo, M.L., et al., Relationship between CD4+CD25+ Treg and expression of HIF-1α and Ki-67 in NSCLC patients, Eur. Rev. Med. Pharmacol. Sci., 2015, vol. 19, pp. 1351–1355.PubMedGoogle Scholar
  34. 34.
    He, Q., Yang, Q.C., Zhou, Q., et al., Effects of varying degrees of intermittent hypoxia on proinflammatory cytokines and adipokines in rats and 3T3-L1 adipocytes, PLoS One, 2014, vol. 9, pp. 86–96.Google Scholar
  35. 35.
    Hirota, K., Ryo Fukuda, R., Takabuchi, S., et al., Molecular mechanism underlying the action of substituted Pro-Gly dipeptide Noopept, J. Biol. Chem., 2004, vol. 279, no. 40, pp. 41521–41528.CrossRefPubMedGoogle Scholar
  36. 36.
    Hong, S., Lee, H., and Kim, K.-W., HIF-1α: a valid therapeutic target for tumor therapy, Cancer Res. Treat., 2004, vol. 36, no. 6, pp. 343–353.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Huang, L.E. and Bunn, H.F., Hypoxia-inducible factor and its biomedical relevance, J. Biol. Chem., 2003, vol. 278, pp. 19575–19578.CrossRefPubMedGoogle Scholar
  38. 38.
    Imtiyaz, H.Z. and Simon, M.C., Hypoxia-inducible factors as essential regulators of inflammation, Curr. Top. Microbiol. Immunol., 2010, vol. 345, pp. 105–120.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Jantsch, J., Chakravortty, D., Turza, N., et al., Hypoxia and hypoxia-inducible factor-1α modulate lipopolysaccharide-induced dendritic cell activation and function, J. Immunol., 2008, vol. 180, pp. 4697–4705.CrossRefPubMedGoogle Scholar
  40. 40.
    Jiang, H., Zhu, Y.S., Xu, H., et al., Inflammatory stimulation and hypoxia cooperatively activate HIF-1α in bronchial epithelial cells: involvement of PI3K and NF-κB, Am. J. Physiol. Lung Cell Mol. Physiol., 2010, vol. 298, pp. 660–669.CrossRefGoogle Scholar
  41. 41.
    Karin, M., Nuclear factor–κB in cancer development and progression, Nature, 2006, vol. 441, pp. 431–436.CrossRefGoogle Scholar
  42. 42.
    Kim, H.J., Park, J.W., Cho, Y.S., et al., Pathogenic role of HIF-1α in prostate hyperplasia in the presence of chronic inflammation, Biochim. Biophys. Acta, 2013, vol. 1832, pp. 183–194.CrossRefPubMedGoogle Scholar
  43. 43.
    Kim, K.J., Choi, J.S., Kang, I., et al., Melatonin suppresses tumor progression by reducing angiogenesis stimulated by HIF-1 in a mouse tumor model, J. Pineal Res., 2013, vol. 54, no. 3, pp. 264–270.CrossRefPubMedGoogle Scholar
  44. 44.
    Kim, M., Neinast, M.D., Frank, A.P., et al., ERα upregulates Phd3 to ameliorate HIF-1 induced fibrosis and inflammation in adipose tissue, Mol. Metab., 2014, vol. 3, pp. 642–651.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kim, Y., Kim, B.H., Lee, H., et al., Regulation of skin inflammation and angiogenesis by EC-SOD via HIF-1α and NF-κB pathways, Free Radical Biol. Med., 2011, vol. 51, pp. 1985–1995.CrossRefGoogle Scholar
  46. 46.
    Kimura, M., Suzuki, H., and Ishihama, A., Formation of a carboxyterminal domain phosphatase (Fcp1)/TFIIF/RNA polymerase II (pol II) complex in Schizosaccharomyces pombe involves direct interaction between Fcp1 and the Rpb4 subunit of pol II, Mol. Cell Biol., 2002, vol. 22, no. 5, pp. 1577–1588.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Klyushnik, T.P., Androsova, L.V., Mikhailova, N.M., et al., Systemic inflammatory markers in age-associated cognitive impairment and Alzheimer’s disease, Zh. Nevropatol. Psikhiatr. im. S.S. Korsakova, 2017, vol. 117, no. 7, p. 74–79.CrossRefGoogle Scholar
  48. 48.
    Koukourakis, M.I., Giatromanolaki, A., Skarlatos, J., et al., Hypoxia inducible factor (HIF-1α and HIF-2α) expression in early esophageal cancer and response to photodynamic therapy and radiotherapy, Cancer Res., 2001, vol. 61, no. 5, pp. 1830–1832.PubMedGoogle Scholar
  49. 49.
    Kung, A.L., Zabludoff, S.D., France, D.S., et al., Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway, Cancer Cell, 2004, vol. 6, no. 1, pp. 33–43.CrossRefPubMedGoogle Scholar
  50. 50.
    Lando, D., Peet, D.J., Whelan, D.A., et al., Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch, Science, 2002, vol. 295, pp. 858–861.CrossRefPubMedGoogle Scholar
  51. 51.
    Lee, J.W., Bae, S.H., Jeong, J.W., et al., Hypoxia-inducible factor (HIF-1)α: its protein stability and biological functions, Exp. Mol. Med., 2004, vol. 36, no. 1, pp. 1–12.CrossRefPubMedGoogle Scholar
  52. 52.
    Lee, S.H., Kim, C.H., Yang, K.S., et al., Increased expression of vascular endothelial growth factor and hypoxia inducible factor-1α in lung tissue of patients with chronic bronchitis, Clin. Biochem., 2014, vol. 47, pp. 552–559.CrossRefPubMedGoogle Scholar
  53. 53.
    Lerman, O.Z., Galiano, R.D., Armour, M., et al., Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia, Am. J. Pathol., 2003, vol. 162, pp. 303–312.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Liu, X., Q6, a novel hypoxia-targeted drug, regulates hypoxiainducible factor signaling via an autophagy-dependent mechanism in hepatocellular carcinoma, Autophagy, 2014, vol. 10, pp. 111–122.CrossRefPubMedGoogle Scholar
  55. 55.
    Liu, F., Shi, J., and Tanimukai, H., Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease, Brain, 2009, vol. 132, pp. 1820–1832.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Liu, Y., Xu Y., Zhang, L., et al., Down-regulated drebrin aggravates cognitive impairments in a mouse model of Alzheimer’s disease, Int. J. Mol. Sci., 2017, vol. 18, no. 4, p. 800.CrossRefPubMedCentralGoogle Scholar
  57. 57.
    Mackenzie, R., Maxwell, N., Castle, P., et al., Intermittent exercise with and without hypoxia improves insulin sensitivity in individuals with type 2 diabetes, J. Clin. Endocrinol. Metab., 2012, vol. 97, pp. 546–555.CrossRefGoogle Scholar
  58. 58.
    Maher, F., Vannucci, S.J., and Simpson, I.A., Glucose transporter proteins in brain, FASEB J., 1994, vol. 8, pp. 1003–1011.CrossRefPubMedGoogle Scholar
  59. 59.
    Martin, A., Komada, M.R., and Sane, D.C., Abnormal angiogenesis in diabetes mellitus, Med. Res. Rev., 2003, vol. 23, pp. 117–145.CrossRefPubMedGoogle Scholar
  60. 60.
    McNamee, E.N., Korns, J.D., Homann, D., and Clambey, E.T., Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function, Immunol. Res., 2013, vol. 55, pp. 58–70.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Minhas, G., Mathur, D., Ragavendrasamy, B., et al., Hypoxia in CNS pathologies: emerging role of miRNA-based neurotherapeutics and yoga based alternative therapies, Front. Neurosci., 2017, vol. 11, p. 273.CrossRefGoogle Scholar
  62. 62.
    Morishima, T., Hasegawa, Y., Sasaki, H., et al., Effects of different periods of hypoxic training on glucose metabolism and insulin sensitivity, Clin. Physiol. Funct. Imaging, 2015, vol. 35, pp. 104–109.CrossRefPubMedGoogle Scholar
  63. 63.
    Mueckler, M., Facilitative glucose transporters, Eur. J. Biochem., 1994, vol. 219, pp. 713–725.CrossRefPubMedGoogle Scholar
  64. 64.
    Nangaku, M. and Fujita, T., Activation of the renin-angiotensin system and chronic hypoxia of the kidney, Hypertens. Res., 2008, vol. 31, no. 2, pp. 175–184.CrossRefPubMedGoogle Scholar
  65. 65.
    Nishi, H., Nakada, T., Kyo, S., et al., Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT), Mol. Cell Biol., 2004, vol. 24, pp. 6076–6083.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Özdemir, G., Ergün, Y., Bakariş, S., et al., Melatonin prevents retinal oxidative stress and vascular changes in diabetic rats, Eye, 2014, vol. 28, no. 8, pp. 1020–1027.Google Scholar
  67. 67.
    Palazon, A., Goldrath, A.W., Nizet, V., and Johnson, R.S., HIF transcription factors, inflammation, and immunity, Immunity, 2014, vol. 41, pp. 518–528.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Park, H.S., Kim, J.H., Sun, B.K., et al., Hypoxia induces glucose uptake and metabolism of adipose-derived stem cells, Mol. Med. Rep., 2016, vol. 14, pp. 4706–4714.CrossRefPubMedGoogle Scholar
  69. 69.
    Park, S.H., Kim, B.R., Lee, J.H., et al., GABARBP down-regulates HIF-1α expression through the VEGFR-2 and PI3K/mTOR/4E-BP1 pathways, Cell Signal., 2014, vol. 26, no. 7, pp. 1506–1513.CrossRefPubMedGoogle Scholar
  70. 70.
    Pawlik, M.W., Kwiecien, S., Pajdo, R., et al., Esophagoprotective activity of angiotensin-(1–7) in experimental model of acute reflux esophagitis: evidence for the role of nitric oxide, sensory nerves, hypoxia-inducible factor-1alpha and proinflammatory cytokines, J. Physiol. Pharmacol., 2014, vol. 65, pp. 809–822.PubMedGoogle Scholar
  71. 71.
    Petousi, N. and Robbins, P.A., Human adaptation to the hypoxia of high altitude: the Tibetan paradigm from the pregenomic to the postgenomic era, J. Appl. Physiol., 2014, vol. 116, no. 7, pp. 875–884.CrossRefPubMedGoogle Scholar
  72. 72.
    Peyssonnaux, C., Datta, V., Cramer, T., et al., HIF-1α expression regulates the bactericidal capacity of phagocytes, J. Clin. Invest., 2005, vol. 115, pp. 1806–1815.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Prabhakar, N.R. and Semenza, G.L., Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2, Physiol. Rev. Publ., 2012, vol. 92, no. 3, pp. 967–1003.CrossRefGoogle Scholar
  74. 74.
    Pugh, C.W. and Ratcliffe, P.J., Regulation of angiogenesis by hypoxia: role of the HIF system, Nat. Med., 2003, vol. 9, no. 6, pp. 677–684.CrossRefPubMedGoogle Scholar
  75. 75.
    Remels, A.H., Gosker, H.R., Verhees, K.J., et al., TNF-α-induced NF-κB activation stimulates skeletal muscle glycolytic metabolism through activation of HIF-1α, Endocrinology, 2015, vol. 156, pp. 1770–1781.CrossRefPubMedGoogle Scholar
  76. 76.
    Ruas, J.L., Poellinger, L., and Pereira, T., Functional analysis of hypoxia-inducible factor-1-mediated transactivation—identification of amino acid residues critical for transcriptional activation and/or interaction with CBP, J. Biol. Chem., 2002, vol. 277, pp. 38723–38730.CrossRefPubMedGoogle Scholar
  77. 77.
    Sanchez-Sanchez, A.M., Antolin, I., and Puente-Moncada, N., Melatonin cytotoxicity is associated to Warburg effect inhibition in Ewing sarcoma cells, PLoS One, 2015, vol. 10, p. 8.CrossRefGoogle Scholar
  78. 78.
    Sasaki, T., Kuroko, M., Sekine, S., et al., Overexpression of insulin receptor partially improves obese and diabetic phenotypes in db/db mice, Endocrinol. J., 2015, vol. 62, pp. 787–796.Google Scholar
  79. 79.
    Sayed, Kh.M. and Mahmoud, A.A., Heat shock protein-70 and hypoxia inducible factor-1α in type 2 diabetes mellitus patients complicated with retinopathy, Acta Ophthalmol., 2016, vol. 94, no. 5, pp. 361–366.CrossRefGoogle Scholar
  80. 80.
    Schnell, P.O., Ignacak, M.L., Bauer, A.L., et al., Regulation of tyrosine hydroxylase promoter activity by the von Hippel–Lindau tumor suppressor protein and hypoxia-inducible transcription factors, J. Neurochem., 2003, vol. 85, no. 2, pp. 483–491.CrossRefPubMedGoogle Scholar
  81. 81.
    Schofield, C.J. and Ratcliffe, P.J., Oxygen sensing by HIF hydroxylases, Nat. Rev. Mol. Cell Biol., 2004, vol. 5, no. 5, pp. 343–354.CrossRefPubMedGoogle Scholar
  82. 82.
    Scholz, C.C. and Taylor, C.T., Targeting the HIF pathway in inflammation and immunity, Curr. Opin. Pharmacol., 2013, vol. 13, pp. 646–653.CrossRefPubMedGoogle Scholar
  83. 83.
    Schubert, D., Soucek, T., and Blouw, B., The induction of HIF-1 reduces astrocyte activation by amyloid beta peptide, Eur. J. Neurosci., 2009, vol. 29, pp. 1323–1334.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Semenza, G.L., Targeting HIF-1 for cancer therapy, Nat. Rev. Cancer, 2003, vol. 3, no. 10, pp. 721–732.CrossRefPubMedGoogle Scholar
  85. 85.
    Semenza, G.L., Hydroxylation of HIF-1: oxygen sensing at the molecular level, Physiology (Bethesda), 2004, vol. 19, pp. 176–182.CrossRefPubMedGoogle Scholar
  86. 86.
    Semenza, G.L., Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis, Blood, 2009, vol. 114, no. 10, pp. 2015–2019.CrossRefPubMedGoogle Scholar
  87. 87.
    Semenza, G.L. and Wang, G.L., A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site 96 required for transcriptional activation, Mol. Cell Biol., 1992, vol. 12, pp. 5447–5454.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Serebrovska, T.V., Portnychenko, A.G., Drevytska, T.I., et al., Intermittent hypoxia training in prediabetes patients: beneficial effects on glucose homeostasis, hypoxia tolerance and gene expression, Exp. Biol. Med., 2017, vol. 242, no. 15, pp. 1542–1552.CrossRefGoogle Scholar
  89. 89.
    Shen, H., Feng, G., Cui, J., et al., Clinical implications of serum hypoxia inducible factor-1α and vascular endothelial growth factor in lung cancer, Tumori J., 2015, vol. 101, no. 4, pp. 404–411.CrossRefGoogle Scholar
  90. 90.
    Shepardson, K.M., Jhingran, A., Caffrey, A., et al., Myeloid derived hypoxia inducible factor 1-α is required for protection against pulmonary Aspergillus fumigatus infection, PLoS Pathog., 2014, vol. 10, pp. 36–65.CrossRefGoogle Scholar
  91. 91.
    Shrestha, P., Davis, D.A., Veeranna, R.P., et al., Hypoxia-inducible factor-1α as a therapeutic target for primary effusion lymphoma, PLoS Pathog., 2017, vol. 13, no. 9, pp. 89–96.CrossRefGoogle Scholar
  92. 92.
    Taie, S., Ono, J., Iwanaga, Y., et al., Hypoxiainducible factor-1α has a key role in hypoxic preconditioning, J. Clin. Neurosci., 2009, vol. 16, no. 8, pp. 1056–1060.CrossRefPubMedGoogle Scholar
  93. 93.
    Talks, K.L., Turley, H., Gatter, K.C., et al., The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages, Am. J. Pathol., 2000, vol. 157, no. 2, pp. 411–421.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Tekin, D., Dursun, A.D., and Xi, L., Hypoxia inducible factor 1 (HIF-1) and cardioprotection, Acta Pharmacol. Sin., 2010, vol. 31, pp. 1085–1094.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Thangarajah, H., Yao, D., Chang, E.I., et al., The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues, Proc. Nat. Acad. Sci. U.S.A., 2009, vol. 106, pp. 13505–13510.CrossRefGoogle Scholar
  96. 96.
    Thangarajah, H., Vial, I.N., Grogan, R.H., et al., HIF-1α dysfunction in diabetes, Cell Cycle, 2010, vol. 9, no. 1, pp. 75–79.CrossRefPubMedGoogle Scholar
  97. 97.
    Tian, Y., Yao, J., Liu, S., et al., Identification and expression analysis of 26 oncogenes of the receptor tyrosine kinase family in channel catfish after bacterial infection and hypoxic stress, Comp. Biochem. Physiol., Part D: Genomics Proteomics, 2015, vol. 14, pp. 16–25.Google Scholar
  98. 98.
    Tian, Y.M., Liu, Y., Wang, S., et al., Anti-diabetes effect of chronic intermittent hypobaric hypoxia through improving liver insulin resistance in diabetic rats, Life Sci., 2016, vol. 150, pp. 1–7.CrossRefPubMedGoogle Scholar
  99. 99.
    Uden, P., Kenneth, N.S., and Rocha, S., Regulation of hypoxia-inducible factor-1α by NF-κB, Biochem. J., 2008, vol. 412, no. 3, pp. 477–484.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Vakhitova, Yu.V., Sadovnikov, S.V., Borisevich, S.S., et al., Molecular mechanism underlying the action of substituted Pro-Gly dipeptide Noopept, Acta Nat., 2016, vol. 8, no. 1 (28), pp. 82–89.Google Scholar
  101. 101.
    Vaupel, P. and Mayer, A., Hypoxia in cancer: significance and impact on clinical outcome, Cancer Metastasis Rev., 2007, vol. 26, no. 2, pp. 225–239.CrossRefPubMedGoogle Scholar
  102. 102.
    Wang, B., Wood, I.S., and Trayhurn, P., Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes, Pflugers Arch., 2007, vol. 455, pp. 479–492.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Wenger, R.H., Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression, FASEB J., 2002, vol. 16, pp. 1151–1162.CrossRefPubMedGoogle Scholar
  104. 104.
    Wiesener, M.S., Jurgensen, J.S., Rosenberger, C., et al., Widespread hypoxia-inducible expression of HIF-2α in distinct cell populations of different organs, FASEB J., 2003, vol. 17, pp. 271–273.CrossRefPubMedGoogle Scholar
  105. 105.
    Willam, C., HIF meets NF-κB signaling, Kidney Int., 2014, vol. 85, pp. 232–234.CrossRefPubMedGoogle Scholar
  106. 106.
    Xu, Y., Zhao, Y., Xu, W., et al., Involvement of HIF-2α-mediated inflammation in arsenite-induced transformation of human bronchial epithelial cells, Toxicol. Appl. Pharmacol., 2013, vol. 272, pp. 542–550.CrossRefPubMedGoogle Scholar
  107. 107.
    Xue, L., Chen, H., Lu, K., et al., Clinical significance of changes in serum neuroglobin and HIF-1α concentrations during the early-phase of acute ischemic stroke, J. Neurol. Sci., 2017, vol. 375, pp. 52–57.CrossRefPubMedGoogle Scholar
  108. 108.
    Yan, H.T. and Su, G.F., Expression and significance of HIF-1α and VEGF in rats with diabetic retinopathy, Asian Pac. J. Trop. Med., 2014, vol. 7, pp. 237–240.CrossRefPubMedGoogle Scholar
  109. 109.
    Yang, J., Zhang, L., Erbel, P.J., et al., Functions of the Per/ARNT/Sim domains of the hypoxia-inducible factor, J. Biol. Chem., 2005, vol. 43, pp. 36047–36054.CrossRefGoogle Scholar
  110. 110.
    Yang, S., Yu, M., Sun, L., et al., Interferon-γ-induced intestinal epithelial barrier dysfunction by NF-κB/HIF-1α pathway, J. Interferon Cytokine Res., 2014, vol. 34, pp. 195–203.CrossRefPubMedGoogle Scholar
  111. 111.
    Yin, X., Wright, J., Wall, T., and Grammas, P., Brain endothelial cells synthesize neurotoxic thrombin in Alzheimer’s disease, Am. J. Pathol., 2010, vol. 176, pp. 1600–1606.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Zampell, J.C., Yan, A., Avraham, T., et al., HIF-1α coordinates lymphangiogenesis during wound healing and in response to inflammation, FASEB J., 2012, vol. 26, pp. 1027–1039.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Zhang, Y., Shao, Z., Zhai, Z., et al., The HIF-1 hypoxia-inducible factor modulates lifespan in C. elegans, PLoS One, 2009, vol. 4, no. 7, pp. 563–569.CrossRefGoogle Scholar
  114. 114.
    Zhang, Y., Strehin, I., Bedelbaeva, K., et al., Drug-induced regeneration in adult mice, Sci. Transl. Med., 2015, vol. 7, p. 290.Google Scholar
  115. 115.
    Zheng, H., Fridkin, M., and Youdim, M., New approaches to treating Alzheimer’s disease, Perspect. Med. Chem., 2015, vol. 7, pp. 1–8.Google Scholar
  116. 116.
    Ziello, J.E., Jovin, I.S., and Huang, Y., Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia, Yale J. Biol. Med., 2007, vol. 80, no. 2, pp. 51–60.PubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. S. Popravka
    • 1
    • 2
  • N. S. Linkova
    • 1
    • 2
    Email author
  • S. V. Trofimova
    • 1
  • V. Kh. Khavinson
    • 1
    • 3
  1. 1.St. Petersburg Institute of Bioregulation and GerontologySt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  3. 3.Pavlov Institute of Physiology, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations