Biology Bulletin Reviews

, Volume 5, Issue 5, pp 415–461 | Cite as

The early history of the metazoa—a paleontologist’s viewpoint



Successful molecular biology, which led to the revision of fundamental views on the relationships and evolutionary pathways of major groups (“phyla”) of multicellular animals, has been much more appreciated by paleontologists than by zoologists. This is not surprising, because it is the fossil record that provides evidence for the hypotheses of molecular biology. The fossil record suggests that the different “phyla” now united in the Ecdysozoa, which comprises arthropods, onychophorans, tardigrades, priapulids, and nematomorphs, include a number of transitional forms that became extinct in the early Palaeozoic. The morphology of these organisms agrees entirely with that of the hypothetical ancestral forms reconstructed based on ontogenetic studies. No intermediates, even tentative ones, between arthropods and annelids are found in the fossil record. The study of the earliest Deuterostomia, the only branch of the Bilateria agreed on by all biological disciplines, gives insight into their early evolutionary history, suggesting the existence of motile bilaterally symmetrical forms at the dawn of chordates, hemichordates, and echinoderms. Interpretation of the early history of the Lophotrochozoa is even more difficult because, in contrast to other bilaterians, their oldest fossils are preserved only as mineralized skeletons. However, the unity of the microstructures of mollusks, brachiopods, and bryozoans, which is absent in other metazoans, is indicative of the presence of close relatives among the various earliest lophotrochozoans, some of which were sedentary suspension-feeders while others were mobile epibenthic detritophages. In the aggregate, modern data from molecular biology, palaeontology, and comparative embryology/morphology, having been revitalized by the introduction of new microscopy techniques, imply that the hypothesized planktotrophic gastrae-like common ancestor is the least likely of the diverse suggestions on the origins of the Metazoa. The common ancestor of the Bilateria had to be a motile epibenthic animal, and the explosive metazoan diversification embracing the Late Ediacaran–Early Cambrian interval (c. 40 Ma) was probably a real event, which was predated by a long (ca. a billion years) period of the assembly of the metazoan genome within the unicellular and colonial common ancestors of the Opisthokonta, and possibly even the entire Unikonta.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguinaldo, A.M.A., Turbeville, J.M., Linford, L.S., et al., Evidence for a clade of nematodes, arthropods and other molting animals, Nature, 1997, vol. 387, no. 6632, pp. 489–493.PubMedCrossRefGoogle Scholar
  2. Aldridge, R.J. and Briggs, D.E.G., Conodonts, in Problematic Fossil Taxa, Hoffman, A. and Nitecki, M.H., Eds., New York: Oxford Univ. Press, 1986, pp. 227–239.Google Scholar
  3. Aldridge, R.J., Hou, X.-G., Siveter, D.J., et al., The systematics and phylogenetic relationships of vetulicolians, Palaeontology, 2007, vol. 50, no. 1, pp. 131–168.CrossRefGoogle Scholar
  4. Aleshin, V.V., Milyutina, I.A., Kedrova, O.S., et al., Phylogeny of Nematoda and Cephalorhyncha derived from 18S rDNA, J. Mol. Evol., 1998, vol. 47, no. 5, pp. 597–605.PubMedCrossRefGoogle Scholar
  5. Al-Sawalmih, A., Li, C., Siegel, S., et al., Microtexture and chitin/calcite orientation relationship in the mineralized exoskeleton of the American lobster, Adv. Funct. Mater., 2008, vol. 18, no. 20, pp. 3307–3314.CrossRefGoogle Scholar
  6. Altenburger, A., Wanninger, A., and Holmer, L.E., Metamorphosis in Craniiformea revisited: Novocrania anomala shows delayed development of the ventral valve, Zoomorphology, 2013, vol. 132, no. 4, pp. 379–387.CrossRefGoogle Scholar
  7. Alwes, F. and Scholtz, G., Cleavage and gastrulation of the euphausiacean Meganyctiphanes norvegica (Crustacea, Malacostraca), Zoomorphology, 2004, vol. 123, no. 3, pp. 125–137.CrossRefGoogle Scholar
  8. Antcliffe, J.B., Questioning the evidence of organic compounds called sponge biomarkers, Palaeontology, 2013, vol. 56, no. 5, pp. 917–925.Google Scholar
  9. Antcliffe, J.B. and Brasier, M.D., Charnia at 50: developmental models for Ediacaran fronds, Palaeontology, 2008, vol. 51, no. 1, pp. 11–26.CrossRefGoogle Scholar
  10. Antcliffe, J.B., Callow, R.H.T., and Brasier, M.D., The origin of sponges, p. examination of Precambrian metazoan diversifications, in 55th Annual Meeting of Paleontological Association, Plymouth University, December 17–20, 2011. Abstracts of Papers, Plymouth: Plymouth Univ., 2011, pp. 15–16.Google Scholar
  11. Arendt, D. and Nubler-Jung, K., Inversion of dorsoventral axis? Nature, 1994, vol. 371, no. 6492, p. 26.PubMedCrossRefGoogle Scholar
  12. Arendt, D., Denes, A.S., Jékely, G., and Tessmar-Raible, K., The evolution of nervous system centralization, Philos. Trans. R. Soc., B, 2008, vol. 363, no. 1496, pp. 1523–1528.CrossRefGoogle Scholar
  13. Aris-Brosou, S. and Yang, Z., Bayesian models of episodic evolution support a Late Precambrian explosive diversification of the Metazoa, Mol. Biol. Evol., 2003, vol. 20, no. 12, pp. 1947–1954.PubMedCrossRefGoogle Scholar
  14. Ayala, F.J., Rzhetsky, A., and Ayala, F.J., Origin of the metazoan phyla: Molecular clocks confirm palaeontological estimates, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, no. 2, pp. 606–611.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Babcock, L.E. and Ciampaglio, C.N., Frondose fossil from the Conasauga Formation (Cambrian: Drumian Stage) of Georgia, USA, Mem. Assoc. Aust. Palaeontol., 2007, vol. 34, pp. 555–562.Google Scholar
  16. Baguñà, J., Martinez, P., Paps, J., and Riutort, M., Back in time: a new systematic proposal for the Bilateria, Philos. Trans. R. Soc., B, 2008, vol. 363, no. 1496, pp. 1481–1491.CrossRefGoogle Scholar
  17. Bailey, J.V., Joye, S.B., Kalanetra, K.M., et al., Evidence of giant sulphur bacteria in Neoproterozoic phosphorites, Nature, 2007, vol. 445, no. 7124, pp. 198–201.PubMedCrossRefGoogle Scholar
  18. Balavoine, G. and Adoutte, A., The segmented Urbilateria: a testable scenario, integr. Comp. Biol., 2003, vol. 43, no. 1, pp. 137–147.PubMedCrossRefGoogle Scholar
  19. Baldauf, S.L., An overview of the phylogeny and diversity of eukaryotes, J. Syst. Evol., 2008, vol. 46, no. 3, pp. 263–273.Google Scholar
  20. Balthasar, U., Shell structure, ontogeny and affinities of the Lower Cambrian bivalve problematic fossil Mickwitzia muralensis Walcott,1913. Lethaia, 2004, vol. 37, no. 4, pp. 381–400.CrossRefGoogle Scholar
  21. Balthasar, U., Mummpikia gen. nov. and the origin of calcitic-shelled brachiopods, Palaeontology, 2008, vol. 51, no. 2, pp. 263–279.CrossRefGoogle Scholar
  22. Balthasar, U. and Butterfield, N.J., Early Cambrian “softshelled” brachiopods as possible stem-group phoronids, Acta Paleontol. Pol., 2009, vol. 54, no. 2, pp. 307–314.CrossRefGoogle Scholar
  23. Balthasar, U., Skovsted, C.B., Holmer, L.E., and Brock, G.A., Homologous skeletal secretion in tommotiids and brachiopods, Geology, 2009, vol. 37, no. 12, pp. 1143–1146.CrossRefGoogle Scholar
  24. Barskov, I.S., Evolution of ontogenesis of ectocochlia cephalopod, in Sovremennye porblemy izucheniya golovonogikh mollyuskov. Morfologiya, sistematika, evolyutsiya, ekologiya i biostratigrafiya (Modern Problems of Study of Cephalopods: Morphology, Systematics, Evolution, Ecology, and Biostratigraphy), Leonova, T.B., Barskov, I.S., and Mitta, V.V., Eds., Moscow: Paleontol. Inst., Ross. Akad. Nauk, 2012. no. 3, pp. 29–34.Google Scholar
  25. Barskov, I.S., Moskalenko, T.V., and Starostina, L.P., New proves of affiliation of conodontophorids to Chordata, Byull. Mosk. O-va. Ispyt. Prir., Otd. Geol., 1978, vol. 53, no. 5, pp. 158–161.Google Scholar
  26. Bengtson, S., The Lower Cambrian fossil Tommotia, Lethaia, 1970, vol. 3, no. 4, pp. 363–392.CrossRefGoogle Scholar
  27. Bengtson, S., The early history of the Conodonta, Fossils Strata, 1983, vol. 15, pp. 5–19.Google Scholar
  28. Bengtson, S., The cap-shaped Cambrian fossil Maikhanella and the relationship between coeloscleritophorans and mollusks, Lethaia, 1992, vol. 25, no. 4, pp. 401–420.CrossRefGoogle Scholar
  29. Bengtson, S. and Budd, G., Comment on small bilateral fossils from 40 to 55 million years before the Cambrian’, Science, 2004, vol. 306, no. 5700, p. 1291.PubMedCrossRefGoogle Scholar
  30. Bengtson, S., Cunningham, J.A., Yin, C., and Donoghue, P.C.J., A merciful death for the “earliest bilaterian,” Vernanimalcula, Evol. Dev., 2012, vol. 14, no. 5, pp. 421–427.PubMedCrossRefGoogle Scholar
  31. Bengtson, S. and Hou, X., The integument of Cambrian chancelloriids, Acta Paleontol. Pol., 2001, vol. 46, no. 1, pp. 1–22.Google Scholar
  32. Bengtson, S. and Missarzhevsky, V.V., Coeloscleritophora–a major group of enigmatic Cambrian metazoans, in Short Papers for the Second International Symposium on the Cambrian System 1981, U.S. Geol. Surv. Open-File Rep., Taylor, M.E., Ed., Boulder, Colorado: U.S. Geol. Surv., 1981, vol. 81, no. 743, pp. 19–23.Google Scholar
  33. Bengtson, S., Rasmussen, B., and Krapez, B., The Paleoproterozoic megascopic Stirling biota, Paleobiology, 2007, vol. 33, no. 3, pp. 351–381.CrossRefGoogle Scholar
  34. Bengtson, S. and Yue, Z., Fossilized metazoan embryos from the earliest Cambrian, Science, 1997, vol. 277, no. 5343, pp. 1645–1648.CrossRefGoogle Scholar
  35. Benito-Gutiérrez, È. and Arendt, D., CNS evolution: new insight from the mud, Curr. Biol., 2009. vol. 19, no. 15, pp. R640–R642.PubMedCrossRefGoogle Scholar
  36. Bergström, J., The earliest arthropods and other animals, in Proc. Darwin 200 Int. Conf. “Darwin’s Heritage Today,” Long, M., Gu, H., and Zhou, Z., Eds., Beijing: Higher Educ. Press, 2010, pp. 29–42.Google Scholar
  37. Bergström, J. and Hou, X.-G., Arthropod origins, Bull. Geosci., 2003, vol. 78, no. 4, pp. 323–334.Google Scholar
  38. Bergström, J., Hou, X.-G., Zhang, X.-G., and Clausen, S., A new view of the Cambrian arthropod Fuxianhuia, GFF, 2009, vol. 130, no. 4, pp. 189–201.CrossRefGoogle Scholar
  39. Bischoff, G.C.O., Byroniida new order from early Paleozoic strata of eastern Australia (Cnidaria, thecate scyphozoans), Senckenberg. Lethaea, 1989, vol. 69, nos. 5–6, pp. 467–521.Google Scholar
  40. Blackstone, N.W., A new look at some old animals, PLoS Biol., 2009. vol. 7, no. 1, p. e1000007. doi 10.1371/journal.pbio.1000007CrossRefGoogle Scholar
  41. Blackstone, N.W. and Jasker, B.D., Phylogenetic considerations of clonality, coloniality, and mode of germline development in animals, J. Exp. Zool., Part B, 2003, vol. 297, no. 1, pp. 35–47.CrossRefGoogle Scholar
  42. Bleidorn, C., Eeckhaut, I., Podsiadlowski, L., et al., Mitochondrial genome and nuclear sequence data support Myzostomida as part of the annelid radiation, Mol. Biol. Evol., 2007, vol. 24, no. 8, pp. 1690–1701.PubMedCrossRefGoogle Scholar
  43. Boero, F., Schierwater, B., and Piraino, S., Cnidarian milestones in metazoan evolution, integr. Comp. Biol., 2007, vol. 47, no. 5, pp. 693–700.PubMedCrossRefGoogle Scholar
  44. Bonner, J.T., Migration in Dictyostelium polycephalum, Mycologia, 2006, vol. 98, no. 2, pp. 260–264.PubMedCrossRefGoogle Scholar
  45. Bonneville, S., Smits, M.M., Brown, A., et al., Plantdriven fungal weathering: early stages of mineral alternation at the nanometer scale, Geology, 2009, vol. 37, no. 7, pp. 615–618.CrossRefGoogle Scholar
  46. Borchiellini, C., Manuel, M., Alivon, E., et al., Sponge paraphyly and the origin of Metazoa J. Evol. Biol., 2001, vol. 14, no. 1, pp. 171–179.CrossRefGoogle Scholar
  47. Botting, J.P. and Butterfield, N.J., Reconstructing early sponge relationships by using the Burgess Shale fossil Eiffelia globosa, Walcott, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 5, pp. 1554–1559.PubMedCrossRefGoogle Scholar
  48. Bottjer, D.J., Hagadorn, J.W., and Dornbos, S.Q., The Cambrian substrate revolution, GSA Today, 2000. vol. 10, no. 9, pp. 1, 2, 4–7.Google Scholar
  49. Braband, A., Cameron, S.L., Podsiadlowski, L., et al., The mitochondrial genome of the onychophoran Opisthopatus cintipes (Peripatopsidae) reflects the ancestral mitochondrial gene arrangement of Panarthropoda and Ecdysozoa, Mol. Phylogenet. Evol., 2010, vol. 57, no. 1, pp. 285–292.PubMedCrossRefGoogle Scholar
  50. Brain, C.K., Prave, A.R., Hoffmann, K.-H., et al., The first animals: ca. 760-million-year-old sponge-like fossil from Namibia, S. Afr. J. Sci., 2012. vol. 108, nos. 1/2. Scholar
  51. Brasier, M. and Antcliffe, J., Decoding the Ediacaran enigma, Science, 2004, vol. 305, no. 5687, pp. 1115–1117.PubMedCrossRefGoogle Scholar
  52. Brasier, M.D. and Antcliffe, J.B., Dickinsonia from Ediacara: a new look at morphology and body construction, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2008, vol. 270, nos. 3–4, pp. 311–323.CrossRefGoogle Scholar
  53. Brasier, M.D., Antcliffe, J.B., and Liu, A.G., The architecture of Ediacaran fronds, Palaeontology, 2012, vol. 55, no. 5, pp. 1105–1124.CrossRefGoogle Scholar
  54. Brasier, M.D., Green, O., and Shields, G., Ediacaran sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna, Geology, 1997, vol. 25, no. 4, pp. 303–306.CrossRefGoogle Scholar
  55. Briggs, D.E.G., Kear, A.J., Baas, M., et al., Decay and composition of the hemichordate Rhabdopleura: implications for taphonomy of graptolites, Lethaia, 1995, vol. 28, no. 1, pp. 15–23.CrossRefGoogle Scholar
  56. Briggs, D.E.G., Lieberman, B.S., Halgedahl, S.L., and Jarrard, R.D., A new metazoan from the Middle Cambrian of Utah and the nature of Vetulicolia, Palaeontology, 2005, vol. 48, no. 4, pp. 681–686.CrossRefGoogle Scholar
  57. Bromham, L., What can DNA tell us about the Cambrian explosion, integr. Comp. Biol., 2003, vol. 43, no. 1, pp. 148–156.PubMedCrossRefGoogle Scholar
  58. Brown, F.D., Prendergast, A., and Swalla, B.J., Man is but a worm: Chordate origins, Genesis, 2008, vol. 46, no. 14, pp. 605–613.PubMedCrossRefGoogle Scholar
  59. Brown, M.W., Spiegel, F.W., and Silberman, J.D., Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta, Mol. Biol. Evol., 2009, vol. 26, no. 12, pp. 2699–2709.PubMedCrossRefGoogle Scholar
  60. Browne, W.E., Price, A.L., Gerberding, M., and Patel, N.H., Stages of embryonic development in amphipod crustacean Parhyale hawaiensis, Genesis, 2005, vol. 42, no. 3, pp. 124–149.PubMedCrossRefGoogle Scholar
  61. Budd, G.E., Arthropod body-plan evolution in the Cambrian with an example of anomalocaridid muscle, Lethaia, 1998, vol. 31, no. 2, pp. 197–210.Google Scholar
  62. Budd, G.E., Tardigrades as ‘stem-group arthropods’: The evidence from the Cambrian fauna, Zool. Anz., 2001, vol. 240, nos. 3–4, pp. 265–279.CrossRefGoogle Scholar
  63. Budd, G.E. and Telford, M.J., The origin and evolution of arthropods, Nature, 2009, vol. 457, no. 7231, pp. 812–817.PubMedCrossRefGoogle Scholar
  64. Burzin, M.B., Fossil Chytridiomycetes (Mycota, Chytridiomycetes incertae sedis) from the Upper Vendian of the East European platform, in Fauna i ekosistemy geologicheskogo proshlogo (Fauna and Ecosystems of Geological Past), Sokolov, B.S. and Ivanovskii, A.B., Eds., Moscow: Nauka, 1993, pp. 21–33.Google Scholar
  65. Burzin, M.B., Debrenne, F., and Zhuravlev, A.Yu., Evolution of shallow-water level-bottom communities, in The Ecology of the Cambrian Radiation, Zhuravlev, A.Yu. and Riding, R., Eds., New York: Columbia Univ. Press, 2001, pp. 217–237.Google Scholar
  66. Burzin, M.B., Grazhdankin, D.V., and Bronnikov, A.A., The mystery of the Ediacaran organisms, J. Journals, 1998, vol. 2, no. 1, pp. 47–53.Google Scholar
  67. Buss, L.W., The Evolution of Individuality, Princeton: Princeton Univ. Press, 1987.Google Scholar
  68. Butterfield, N.J., A reassessment of the enigmatic Burgess Shale fossils Wiwaxia corrugate (Matthew) and its relationship to polychaete Canadia spinosa Walcott, Paleobiology, 1990, vol. 16, no. 3, pp. 287–303.Google Scholar
  69. Butterfield, N.J., Ecology and evolution of Cambrian plankton, in The Ecology of the Cambrian Radiation, Zhuravlev, A.Yu. and Riding, R., Eds., New York: Columbia Univ. Press, 2001, pp. 200–216.Google Scholar
  70. Butterfield, N.J., Leanchoilia guts and interpretation of three-dimensional structures in Burgess Shale-type fossils, Paleobiology, 2002, vol. 28, no. 1, pp. 155–171.CrossRefGoogle Scholar
  71. Butterfield, N.J., Exceptional fossil preservation and the Cambrian explosion, integr. Comp. Biol., 2003, vol. 43, no. 1, pp. 166–177.PubMedCrossRefGoogle Scholar
  72. Butterfield, N.J., Hooking some stem-group ‘worms’: fossil lophotrochozoans in the Burgess Shale, BioEssays, 2006, vol. 28, no. 12, pp. 1161–1166.PubMedCrossRefGoogle Scholar
  73. Butterfield, N.J., Modes of pre-Ediacaran multicellularity, Precambrian Res., 2009, vol. 173, no. 1, pp. 201–211.CrossRefGoogle Scholar
  74. Butterfield, N.J. and Nicholas, C.J., Burgess Shale-type preservation of both non-mineralizing and ‘shelly’ Cambrian organisms from the Mackenzie Mountains, northwestern Canada, J. Paleontol., 1996, vol. 70, no. 6, pp. 893–899.Google Scholar
  75. Canfield, D.E., A new model for Proterozoic ocean chemistry, Nature, 1998, vol. 396, no. 6701, pp. 450–453.CrossRefGoogle Scholar
  76. Cannon, J.T., Rychel, A.L., Eccleston, H., et al., Molecular phylogeny of hemichordata, with updated status of deep-sea enteropneusts, Mol. Phylogenet. Evol., 2009, vol. 52, no. 1, pp. 17–24.PubMedCrossRefGoogle Scholar
  77. Caron, J.-B., Banffia constricta, a putative vetulicolid from the Middle Cambrian Burgess Shale, Trans. R. Soc. Edinburgh: Earth Sci., 2006, vol. 96, no. 2, pp. 95–111.CrossRefGoogle Scholar
  78. Caron, J.-B., Conway Morris, S., and Cameron, C.B., Tubicolous enteropneusts from the Cambrian period, Nature, 2013., vol. 495, no. 7442, pp. 503–506.PubMedCrossRefGoogle Scholar
  79. Caron, J.-B., Conway Morris, S., and Shu, D., Tentaculate fossils from the Cambrian of Canada (British Columbia) and China (Yunnan) interpreted as primitive deuterostomes, PLoS One, 2010. vol. 5, no. 3, p. e9586. doi 10.1371/journal.pone.0009586PubMedCentralPubMedCrossRefGoogle Scholar
  80. Caron, J.-B. and Jackson, D.A., Taphonomy of the Greater Phyllopod Bed community, Burgess Shale, Palaios, 2006, vol. 21, no. 5, pp. 451–465.CrossRefGoogle Scholar
  81. Caron, J.-B., Scheltema, A., Schander, C., and Rudkin, D., A soft-bodied mollusk with radula from the Middle Cambrian Burgess Shale, Nature, 2006, vol. 442, no. 7099, pp. 159–163.PubMedCrossRefGoogle Scholar
  82. Caron, J.-B., Smith, M.R., and Harvey, T.H.P., Beyond the Burgess Shale: Cambrian microfossils track the rise and fall of hallucigeniid lobopodians, Proc. R. Soc. B, 2013., vol. 280, no. 1767, p. 20131613. http://dx.doi. org/10.1098/rspb.2013.1613PubMedCentralPubMedCrossRefGoogle Scholar
  83. Carr, M., Leadbeater, B.S.C., Hassan, R., et al., Molecular phylogeny of choanoflagellates, the sister group to Metazoa, Proc. Natl. Acad. Sci. U.S.A., 2008. vol. 105, no. 43, pp. 16641–16646.PubMedCentralPubMedCrossRefGoogle Scholar
  84. Cartwright, P. and Collins, A., Fossils and phylogenies: integrating multiple lines of evidence to investigate the origin of early major metazoan lineages, integr. Comp. Biol., 2007, vol. 47, no. 5, pp. 744–751.PubMedCrossRefGoogle Scholar
  85. Cartwright, P., Halgedahl, S.L., Hendricks, J.R., et al., Exceptionally preserved jellyfishes from the Middle Cambrian, PLoS One, 2007. vol. 2, no. 10, p. e1121. doi 10.1371/journal.pone.0001121PubMedCentralPubMedCrossRefGoogle Scholar
  86. Charbonnier, S., Vannier, J., and Riou, B., New sea spiders from the Jurassic La Voulte-sur-Rhône Lagerstatte, Proc. R. Soc. B, 2007, vol. 274, no. 1625, pp. 2555–2561.PubMedCentralPubMedCrossRefGoogle Scholar
  87. Checa, A.G., Ramírez-Rico, J., González-Segura, A., and Sánchez-Navas, A., Nacre and false nacre (foliated aragonite) in extant monoplacophorans (=Tryblidiida: Mollusca), Naturwissenschaften, 2009, vol. 96, no. 1, pp. 111–122.PubMedCrossRefGoogle Scholar
  88. Chen, A. and Huang, D., Gill rays of primitive vertebrate Yunnanozoon from Early Cambrian: a first record, Front. Biol. Chin., 2008, vol. 3, no. 2, pp. 241–244.CrossRefGoogle Scholar
  89. Chen, J. and Zhou G. Biology of the Chengjiang fauna, Bull. Natl. Mus. Nat. Sci. Taichung, 1997, vol. 10, pp. 11–105.Google Scholar
  90. Chen, J.-Y., Bottjer, D.J., Li G., et al., Complex embryos displaying bilaterian characters from Precambrian Doushantuo phosphate deposits, Weng’an, Guizhou, China, Proc. Natl. Acad. Sci. U.S.A., 2009. vol. 106, no. 45, pp. 19056–19060.PubMedCentralPubMedCrossRefGoogle Scholar
  91. Chen, J.-Y., Bottjer, D.J., Oliveri, P., et al., Small bilaterian fossils from 40 to 55 million years before the Cambrian, Science, 2004, vol. 305, no. 5694, pp. 218–222.PubMedCrossRefGoogle Scholar
  92. Chen, J.-Y., Dzik, J., Edgecombe, G.D., et al., A possible Early Cambrian chordate, Nature, 1995., vol. 377, no. 6551, pp. 720–722.CrossRefGoogle Scholar
  93. Chen, J.-Y., Edgecombe, G.D., Ramsköld, L., and Zhou, G.-Q., Head segmentation in Early Cambrian Fuxianhuia: implications for arthropod evolution, Science, 1995., vol. 268, no. 5215, pp. 1339–1343.PubMedCrossRefGoogle Scholar
  94. Chen, J.-Y. and Huang, D.-Y., A possible Lower Cambrian chaetognath (arrow worm), Science, 2002, vol. 298, no. 5591, p. 187.PubMedCrossRefGoogle Scholar
  95. Chen, J.-Y., Huang, D.-Y., and Li, C.W., An early Cambrian craniate-like chordate, Nature, 1999, vol. 402, no. 6761, pp. 518–522.CrossRefGoogle Scholar
  96. Chen, J.-Y., Huang, D.-Y., Peng, Q.-Q., et al., The first tunicate from the Early Cambrian of South China, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 14, pp. 8314–8318.PubMedCentralPubMedCrossRefGoogle Scholar
  97. Chen, J.-Y., Schopf, J.W., Bottjer, D.J., et al., Raman spectra of a Lower Cambrian ctenophore embryo from southwestern Shaanxi, China, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 15, pp. 6289–6292.PubMedCentralPubMedCrossRefGoogle Scholar
  98. Chen, T., Hsu, C., Tsai, P., et al., Heterotrimeric G-protein and signal transduction in the nematode-trapping fungus Arthrobotrys dactyloides, Planta, 2001. vol. 212, no. 5–6, pp. 858–863.PubMedCrossRefGoogle Scholar
  99. Chen, Z., Bengtson, S., Zhou, C.-M., et al., Tube structure and original composition of Sinotubulites: shelly fossils from the late Neoproterozoic in southern Shaanxi, China, Lethaia, 2008, vol. 41, no. 1, pp. 37–45.CrossRefGoogle Scholar
  100. Chen, Z., Zhou, C., Meyer, M., et al., Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors, Precambrian Res., 2013, vol. 224, pp. 690–701.CrossRefGoogle Scholar
  101. Chernikova, D., Motamedi, S., Csürös, M., et al., A late origin of the extant eukaryotic diversity: divergence time estimates using rare genomic changes, Biol. Direct., 2011, vol. 6, p. 26. doi 10.1186/1745-6150-6-26PubMedCentralPubMedCrossRefGoogle Scholar
  102. Chesebro, J.E., Pueyo, J.I., and Couso, J.P., Interplay between a Wnt-dependent organizer and the Notch segmentation clock regulates posterior development in Periplaneta Americana, Biol. Open, 2013. vol. 15, no. 2(2), pp. 227–237.CrossRefGoogle Scholar
  103. Clites, E.C., Droser, M.L., and Gehling, J.G., The advent of hard-part structural support among the Ediacaran harbinger of a Cambrian mode of body construction, Geology, 2012, vol. 40, no. 4, pp. 307–310.CrossRefGoogle Scholar
  104. Cohen, B.L., Holmer, L.E., and Luter, C., The brachiopod fold: a neglected body plan hypothesis, Palaeontology, 2003, vol. 46, no. 1, pp. 59–65.CrossRefGoogle Scholar
  105. Colgan, D.J., Hutchings, P.A., and Beacham, E., Multigene analyses of the phylogenetic relationships among the Mollusca, Annelida, and Arthropoda, Zool. Stud., 2008, vol. 47, no. 3, pp. 338–351.Google Scholar
  106. Conaco, C., Neveu, P., Zhou, H., et al., Transcriptome profiling of the demosponge Amphimedon queenslandica reveals genome-wide events that accompany major life cycle transitions, BMC Genomics, 2012, vol. 13, p. 209. doi 10.1186/1471-2164-13-209PubMedCentralPubMedCrossRefGoogle Scholar
  107. Conway Morris, S., A new Cambrian lophophorate from the Burgess Shale of British Columbia, Palaeontology, 1976, vol. 19, no. 2, pp. 199–222.Google Scholar
  108. Conway Morris, S., A new metazoan from the Cambrian Burgess Shale of British Columbia, Palaeontology, 1977, vol. 20, no. 3, pp. 623–640.Google Scholar
  109. Conway Morris, S., Middle Cambrian polychaetes from the Burgess Shale of British Columbia, Philos. Trans. R. Soc., B, 1979, vol. 285, no. 1007, pp. 227–274.CrossRefGoogle Scholar
  110. Conway Morris, S., The community structure of the Middle Cambrian Phyllopod Bed (Burgess Shale), Palaeontology, 1986, vol. 29, no. 3, pp. 423–467.Google Scholar
  111. Conway Morris, S., Ediacaran-like fossils from the Cambrian Burgess Shale type faunas of North America, Palaeontology, 1993, vol. 36, no. 3, pp. 593–635.Google Scholar
  112. Conway Morris, S., A re-description of a rare chordate, Metaspriggina walcotti Simonetta and Insom, from the Burgess Shale (Middle Cambrian), British Columbia, Canada, J. Paleontol., 2008, vol. 82, no. 2, pp. 424–430.CrossRefGoogle Scholar
  113. Conway Morris, S., The Burgess Shale animal Oesia is not a chaetognath: a reply to Szaniawski (2005), Acta Paleontol. Pol., 2009, vol. 54, no. 1, pp. 175–179.CrossRefGoogle Scholar
  114. Conway Morris, S. and Caron, J.-B., Halwaxiids and the early evolution of the lophotrochozoans, Science, 2007, vol. 315, no. 5816, pp. 1255–1258.CrossRefGoogle Scholar
  115. Conway Morris, S. and Caron, J.-B., Pikaia gracilens Walcott, a stem-group chordate from the Middle Cambrian of British Columbia, Biol. Rev., 2012, vol. 87, no. 2, pp. 480–512.Google Scholar
  116. Conway Morris, S. and Collins, D.H., Middle Cambrian ctenophores from the Stephen Formation, British Columbia, Canada, Philos. Trans. R. Soc., B, 1996, vol. 351, no. 1337, pp. 279–308.CrossRefGoogle Scholar
  117. Conway Morris, S. and Peel, J.S., Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution, Philos. Trans. R. Soc., B, 1995, vol. 347, no. 1321, pp. 305–358.CrossRefGoogle Scholar
  118. Conway Morris, S. and Peel, J.S., The earliest annelids: Lower Cambrian polychaetes from the Sirius Passet Lagerstatte, Peary Land, North Greenland, Acta Palaeontol. Pol., 2008, vol. 53, no. 1, pp. 137–148.CrossRefGoogle Scholar
  119. Conway Morris, S. and Robison, R.A., Middle Cambrian priapulids and other soft-bodied fossils from Utah and Spain, Univ. Kansas Paleontol. Contrib., 1986, vol. 117, pp. 1–22.Google Scholar
  120. Cook, P.J. and Shergold, J.H., Phosphorus, phosphorites and skeletal evolution at the Precambrian-Cambrian boundary, Nature, 1984, vol. 308, no. 5956, pp. 231–236.CrossRefGoogle Scholar
  121. Cooper R.A., Maletz, J., Haifeng, W., and Erdtmann, B.D., Taxonomy and evolution of earliest Ordovician graptoloids, norsk. Geol. Tidsskr., 1998, vol. 78, no. 1, pp. 3–32.Google Scholar
  122. Cortijo, I., Martí Mus, M., Jensen, S., and Palacios, T., A new species of Cloudina from the terminal Ediacaran of Spain, Precambrian Res., 2010. vol. 176, no. 1–4, pp. 1–10.CrossRefGoogle Scholar
  123. Crimes, T.P., Evolution of deep-water benthic community, in The Ecology of the Cambrian Radiation, Zhuravlev, A.Yu. and Riding, R., Eds., New York: Columbia Univ. Press, 2001, pp. 275–297.Google Scholar
  124. Crowe, J.H., Newell, I.M., and Thomson, W.W., Echiniscus viridus (Tardigrada): fine structure of the cuticle, Trans. Am. Microsc. Soc., 1970, vol. 89, no. 2, pp. 316–325.CrossRefGoogle Scholar
  125. Cunningham, J.A., Thomas, C.-W., Bengtson, S., et al., Experimental taphonomy of giant sulphur bacteria: implications for the interpretation of the embryo-like Ediacaran Doushantuo fossils, Proc. R. Soc. B, 2012a, vol. 279, no. 1734, pp. 1857–1864.PubMedCentralPubMedCrossRefGoogle Scholar
  126. Cunningham, J.A., Thomas, C.-W., Bengtson, S., et al., Distinguishing geology from biology in the Ediacaran Doushantuo biota relaxes constraints on the timing of the origin of bilaterians, Proc. R. Soc. B, 2012b, vol. 279, no. 1737, pp. 2369–2376.PubMedCentralPubMedCrossRefGoogle Scholar
  127. Daley, A.C., Budd G.E., Caron, J.-B., et al., The Burgess Shale anomalocaridid Hurdia and its significance for early euarthropod evolution, Science, 2009, vol. 323, no. 5921, pp. 1597–1600.PubMedCrossRefGoogle Scholar
  128. Daley, A.C. and Edgecombe, G.D., Morphology of Anomalocaris Canadensis from the Burgess Shale, J. Paleontol., 2014, vol. 88, no. 1, pp. 68–91.CrossRefGoogle Scholar
  129. Daley, A.C. and Peel, J.S., A possible anomalocaridid from the Cambrian Sirius Passet Lagerstatte, North Greenland, J. Paleontol., 2010, vol. 84, no. 2, pp. 352–355.CrossRefGoogle Scholar
  130. Danovaro, R., Dell’Anno, A., Pusceddu, A., et al., The first metazoan living in permanently anoxic conditions, BMC Biol., 2010, vol. 8, p. 30. doi 10.1186/1741-70078-30PubMedCentralPubMedCrossRefGoogle Scholar
  131. Davies, N.S. and Gibling, M.R., Cambrian to Devonian evolution of alluvial system: The sedimentological impact of early land plants, Earth Sci. Rev., 2010, vol. 98, nos. 3–4, pp. 171–200.CrossRefGoogle Scholar
  132. Debrenne, F. and Zhuravlev, A.Yu., Archaeocyathan affinities: How deep can we go into the systematic affiliation of an extinct group? in Sponges in Time and Space. Biology, Chemistry, Paleontology, van Soest, R.W.M., van Kempenn, T.M.G., and Braekman, J.-C., Eds., Rotterdam: Balkema, 1994, pp. 3–12.Google Scholar
  133. Dellaporta, S.L., Xu, A., Sagasser, S., et al., Mitochondrial genome of Trichoplax adhaerens supports Placozoa as the basal lower metazoan phylum, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 23, pp. 8751–8756.PubMedCentralPubMedCrossRefGoogle Scholar
  134. Delsuc, F., Brinkmann, H., Chourrout, D., and Philippe, H., Tunicates and not cephalochordates are the closest living relatives of vertebrates, Nature, 2006, vol. 439, no. 7079, pp. 965–968.PubMedCrossRefGoogle Scholar
  135. Devaere, L., Clausen, S., Álvaro, J.J., et al., Terreneuvian orthothecid (Hyolitha) digestive tracts from Montagne Noire, France; taphonomic, ontogenetic and phylogenetic implications, PLoS One, 2014, vol. 9, no. 2, p. e88583. doi 10.1371/journal.pone.0088583PubMedCentralPubMedCrossRefGoogle Scholar
  136. Dewel, R.A., Colonial origin for Eumetazoa: major morphological transitions and the origin of bilaterian complexity, J. Morphol., 2000, vol. 243, no. 1, pp. 35–74.PubMedCrossRefGoogle Scholar
  137. Dewel, R.A. and Dewel, W.C., The place of tardigrades in arthropod evolution, in Arthropod relationships, Syst. Assoc. Spec., Fortey, R.A. and Thomas, R.H., Eds., London: Chapman and Hall, 1997, vol. 55, pp. 109–123.Google Scholar
  138. Dewel, R.A. and Eibye-Jacobsen, J., The mouth cone and mouth ring of Echiniscus viridissimus Peterfi, 1956. (Heterotardigrada) with comparisons to corresponding structures in other tardigrades, Hydrobiologia, 2006, vol. 558, pp. 41–51.CrossRefGoogle Scholar
  139. Dickinson, D.J., Nelson, W.J., and Weis, W.I., A polarized epithelium organized by ßand a-catenin predates cadherin and metazoan origins, Science, 2011, vol. 331, no. 6022, pp. 1336–1339.PubMedCentralPubMedCrossRefGoogle Scholar
  140. Dong, L., Xiao, S., Shen, B., et al., Restudy of the wormlike carbonaceous compression fossils Protoarenicola, Pararenicola, and Sinosabellidites from early Neoproterozoic successions in North China, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2008, vol. 258, no. 3, pp. 138–161.CrossRefGoogle Scholar
  141. Dong, X.-P., Cunningham, J.A., Bengtson, S., et al., Embryos, polyps and medusa of the Early Cambrian scyphozoan Olivooides, Proc. R. Soc. B, 2013, vol. 280, p. 20130071. Scholar
  142. Donoghue, P.C.J., Microstructural variation in conodont enamel is a functional adaptation, Proc. R. Soc. B, 2001, vol. 268, no. 1477, pp. 1691–1698.PubMedCentralPubMedCrossRefGoogle Scholar
  143. Donoghue, P.C.J., Forey, P.L., and Aldridge, R.J., Conodont affinity and chordate phylogeny, Biol. Rev., 2000, vol. 75, no. 2, pp. 191–251.PubMedCrossRefGoogle Scholar
  144. Donoghue, P.C.J., Kouchinsky, A., Waloszek, D., et al., Fossilized embryos are widespread but the record is temporally and taxonomically biased, Evol. Dev., 2006, vol. 8, no. 2, pp. 232–238.PubMedCrossRefGoogle Scholar
  145. Donoghue, P.C.J. and Purnell, M.A., Distinguishing heat light in debate over controversial fossils, BioEssays, 2009, vol. 31, no. 2, pp. 178–189.PubMedCrossRefGoogle Scholar
  146. Dornbos, S.Q. and Chen, J.-Y., Community palaeoecology of the Early Cambrian Maotianshan Shale biota: Ecological dominance of priapulid worms, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2008, vol. 258, no. 3, pp. 200–212.CrossRefGoogle Scholar
  147. Droser, M.L., Gehling, J.G., Dzaugis, M.E., et al., A new Ediacaran fossil with a novel sediment displacive life habit, J. Paleontol., 2014, vol. 88, no. 1, pp. 145–151.CrossRefGoogle Scholar
  148. Droser, M.L. and Li, X., The Cambrian radiation and the diversification of sedimentary fabrics, in The Ecology of the Cambrian Radiation, Zhuravlev, A.Yu. and Riding, R., Eds., New York: Columbia Univ. Press, 2001, pp. 137–169.Google Scholar
  149. Dunn, C.W., Hejnol, A., and Matus, D.Q., Broad phylogenomic sampling improves resolution of the animal tree of life, Nature, 2008, vol. 452, no. 7188, pp. 745–749.PubMedCrossRefGoogle Scholar
  150. Dunn, E.F., Moy, V.N., and Angerer, L.M., Molecular paleoecology: using gene regulatory analysis to address the origins of complex life cycles in the late Precambrian, Evol. Dev., 2007, vol. 9, no. 1, pp. 10–24.PubMedCrossRefGoogle Scholar
  151. Durman, P.N. and Sennikov, N.V., A new rhabdopleurid hemichordate from the Middle Cambrian of Siberia, Palaeontology, 1993, vol. 36, no. 2, pp. 283–296.Google Scholar
  152. Dzik, J., Possible Ediacaran ancestry of the halkieriids, Palaeontogr. Can., 2011, vol. 31, pp. 205–218.Google Scholar
  153. Dzik, J. and Krumbiegel, G., The oldest ‘onychophoran’ Xenusion: A link connecting phyla? Lethaia, 1989, vol. 22, no. 2, pp. 169–181.CrossRefGoogle Scholar
  154. Edgecombe, G.D., Giribet, G., and Dunn, C.W., Higherlevel metazoan relationships: recent progress and remaining questions, Org. Divers. Evol., 2011, vol. 11, no. 2, pp. 151–172.CrossRefGoogle Scholar
  155. Egger, B., Steinke, D., Tarui, H., et al., To be or not to be a flatworm: the acoel controversy, PLoS One, 2009. vol. 4, no. 5, p. e5502. doi 10.1371/journal.pone.0005502PubMedCentralPubMedCrossRefGoogle Scholar
  156. Eibye-Jacobsen, D., A reevaluation of Wiwaxia and the polychaetes of the Burgess Shale, Lethaia, 2004, vol. 37, no. 3, pp. 317–335.CrossRefGoogle Scholar
  157. Eibye-Jacobsen, D. and Vinther, J., Reconstructing the ancestral annelid, J. Zool. Syst. Evol. Res., 2012, vol. 50, no. 1, pp. 85–87.CrossRefGoogle Scholar
  158. Eichinger, L., Pachebat, J.A., Glockner, G., et al., The genome of the social amoeba Dictyostelium discoideum, Nature, 2005, vol. 435, no. 7038, pp. 43–57.PubMedCentralPubMedCrossRefGoogle Scholar
  159. Eme, L., Trilles, A., Moreira, D., and Brochier-Armanet, C., The phylogenomic analysis of the anaphase promoting complex and its targets points to complex and modernlike control of the cell cycle in the last common ancestor of eukaryotes, BMC Evol. Biol., 2011, vol. 11, p. 265. Scholar
  160. Ereskovsky, A.V., Borchiellini, C., Gazave, E., et al., The homoscleromorph sponge Oscarella lobularis, a promising sponge model in evolutionary and developmental biology, BioEssays, 2009, vol. 31, no. 1, pp. 89–97.PubMedCrossRefGoogle Scholar
  161. Eriksson, B.J. and Budd, G.E., Onychophoran cephalic nerves and their bearing on our understanding of head segmentation and stem-group evolution of Arthropoda, Arthropod Struct. Dev., 2001, vol. 29, no. 3, pp. 197–209.CrossRefGoogle Scholar
  162. Eriksson, B.J., Tait, N.N., and Budd, G.E., Head development in the onychophoran Euperipatoides kanangrensis with particular reference to the central nervous system, J. Morphol., 2003, vol. 255, no. 1, pp. 1–23.PubMedCrossRefGoogle Scholar
  163. Extavour, C.G.M., Evolution of the bilaterian germ line: lineage origin and modulation of specification mechanisms, integr. Comp. Biol., 2007, vol. 47, no. 5, pp. 770–785.PubMedCrossRefGoogle Scholar
  164. Fairclough, S.R., Dayel, M.J., and King, N., Multicellular development in a choanoflagellate, Curr. Biol., 2010, vol. 20, no. 20, pp. 875–876.CrossRefGoogle Scholar
  165. Fairclough, S.R., Chen, Z., Kramer, E., et al., Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta, Genome Biol., 2013. vol. 14, no. 2, p. R15. doi 10.1186// gb-2013-14-2-r15PubMedCentralPubMedCrossRefGoogle Scholar
  166. Fedonkin, M.A., Organic world of the Vendian, Itogi Nauki Tekh., Ser.: Stratigr. Paleontol., 1983. vol. 12.Google Scholar
  167. Fedonkin, M.A., Paleoichnology of Vendian Metazoa, in Vendskaya sistema: Istoriko-geologicheskoe i paleontologicheskoe obosnovanie. Tom 1. Paleontologiya (Vendian System: Historical-Geological and Paleontological Substentiation, Vol. 1: Paleontology), Sokolov, B.S. and Ivanovskii, A.B., Eds., Moscow: Nauka, 1985, pp. 112–117.Google Scholar
  168. Fedonkin, M.A., Besskeletnaya fauna venda i ee mesto v evolyutsii Metazoa (Non-Skeletal Fauna of Vendian and Its Place in Evolution of Metazoa), Tr. Paleontol. Inst., Akad. Nauk SSSR, Moscow: Nauka, vol. 226, 1987.Google Scholar
  169. Fedonkin, M.A., Cold down of animal’s life, Priroda (Moscow), 2000. no. 9, pp. 3–11.Google Scholar
  170. Fedonkin, M.A. and Yochelson, E.L., Middle Proterozoic (1.5 Ga) Horodyskia moniliformis Yochelson and Fedonkin, the oldest known tissue grade colonial eukaryote, Smithson. Contr. Paleobiol., 2002. no. 94, pp. 1–29.CrossRefGoogle Scholar
  171. Feng, W., Chen, Z., and Sun, W., Diversification of skeletal microstructures of organisms through the interval from the latest Precambrian to the Early Cambrian, Sci. China. Ser. D, 2003, vol. 46, no. 10, pp. 977–985.CrossRefGoogle Scholar
  172. Feng, W., Mu, X., and Kouchinsky, A.V., Hyolith-type microstructure in a mollusk-like fossil from the Early Cambrian of Yunnan, China, Lethaia, 2001, vol. 34, no. 4, pp. 303–308.CrossRefGoogle Scholar
  173. Fike, D.A., Grotzinger, J.P., Pratt, L.M., and Summons, R.E., Oxidation of Ediacaran ocean, Nature, 2006, vol. 444, no. 7120, pp. 744–747.PubMedCrossRefGoogle Scholar
  174. Finnerty, J.R., Pang, K., and Burton, P., Origins of bilateral symmetry: Hox and Dpp expression in a sea anemone, Science, 2004, vol. 304, no. 5675, pp. 1335–1337.PubMedCrossRefGoogle Scholar
  175. Fonin, V.D. and Smirnova, T.N., New group of problematic Early Cambrian organisms and some preparation methods, Paleontol. Zh., 1967. no. 2, pp. 15–27.Google Scholar
  176. Friend, D., Zhuravlev, A.Yu., and Solov’ev, I.A., Middle Cambrian Eldonia from the Siberian Platform, Paleontol. J., 2002, vol. 36, no. 1, pp. 20–24.Google Scholar
  177. Fuller, M. and Jenkins, R., Reef corals from the Lower Cambrian of the Flinders Ranges, South Australia, Palaeontology, 2007, vol. 50, no. 4, pp. 961–980.CrossRefGoogle Scholar
  178. Funch, P., The chordoid larva of Symbion Pandora (Cycliophora) is a modified trochophore, J. Morphol., 1996, vol. 230, no. 3, pp. 231–263.CrossRefGoogle Scholar
  179. Gabriel, W.N. and Goldstein, B., Segmental expression of Pax3/7 and Engrailed homologes in tardigrade development, Dev. Genes Evol., 2007, vol. 217, no. 6, pp. 421–433.PubMedCrossRefGoogle Scholar
  180. Gaines, R.R., Hammarlund, E.U., Hou, X., et al., Mechanism for Burgess Shale-type preservation, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 14, pp. 5180–5184.PubMedCentralPubMedCrossRefGoogle Scholar
  181. Gámez Vintaned, J.A. and Liñán, E., The Precambrian/Cambrian boundary in Spain: ichnofossil palaeobiology and zonation, in Trans. Int. Conf. IGCP Project 493 “The Rise and Fall of the Vendian (Ediacaran) Biota. Origin of the Modern Biosphere,” Semikhatov, M.A., Ed., Moscow: GEOS, 2007, pp. 54–57.Google Scholar
  182. Gámez Vintaned, J.A., Liñán, E., and Zhuravlev, A.Yu., A new early Cambrian lobopod-bearing animal (Murero, Spain) and the problem of the ecdysozoan early diversification, in Evolutionary Biology–Concepts, Biodiversity, Macroevolution, and Genome Evolution, Pontarotti, P., Ed., Berlin: Springer-Verlag, 2011, pp. 193–219.CrossRefGoogle Scholar
  183. Gámez Vintaned, J.A. and Zhuravlev, A.Yu., The oldest evidence of bioturbation on Earth, Geology, 2013. vol. 41, no. 9, p. e299.CrossRefGoogle Scholar
  184. García-Bellido, D.C. and Collins, D.H., A new study of Marella splendens (Arthropoda, Marrellomorpha) from the Middle Cambrian Burgess Shale, British Columbia, Canada, Can. J. Earth Sci., 2006, vol. 43, no. 6, pp. 721–742.CrossRefGoogle Scholar
  185. Garcia-Fernàndez, J. and Benito-Gutiérrez, È., It’s a long way from amphioxus: descendants of the earliest chordate, BioEssays, 2009, vol. 31, no. 6, pp. 665–675.PubMedCrossRefGoogle Scholar
  186. Gazave, E., Lapébie, P., Ereskovsky, A.V., et al., No longer Demospongiae: Homoscleromorpha formal nomination as a fourth class of Porifera, Hydrobiologia, 2012, vol. 687, no. 1, pp. 3–10.CrossRefGoogle Scholar
  187. Gee, H., On being vetulicolian, Nature, 2001, vol. 414, no. 6862, pp. 407–409.PubMedCrossRefGoogle Scholar
  188. Gehling, J.G. and Rigby, J.K., Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia, J. Paleontol., 1996, vol. 70, no. 2, pp. 185–195.Google Scholar
  189. Geoffroy Saint-Hilaire, È., Considérations générales sur la vertèbre, Mém. Mus. Hist. Nat. Paris, 1822, vol. 9, no. 2, pp. 89–119.Google Scholar
  190. Ghisalberti, M., Gold, D.A., Laflamme, M., et al., Canopy flow analysis reveals the advantage of size in the oldest communities of multicellular eukaryotes, Curr. Biol., 2014. vol. 24. Scholar
  191. Gill, B.C., Lyons, T.W., Young, S.A., et al., Geochemical evidence for widespread Euxinia in the Late Cambrian ocean, Nature, 2011, vol. 469, no. 7328, pp. 80–83.PubMedCrossRefGoogle Scholar
  192. Giribet, G., Okusu, A., Lindgren, A.R., et al., Evidence for a clade composed of mollusks with serially repeated structures: Monoplacophorans are related to chitons, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 20, pp. 7723–7728.PubMedCentralPubMedCrossRefGoogle Scholar
  193. Giribet, G., Dunn, C.W., Edgecombe, G.D., et al., Assembling the spiralian tree of life, in Animal Evolution: Genomes, Fossils, and Trees, Telford, M.J. and Littlewood, D.T.J., Eds., Oxford, NY: Oxford Univ. Press, 2009, pp. 52–64.CrossRefGoogle Scholar
  194. Glaessner, M.F., The Down of Animal Life: A Biohistorical Study, Cambridge: Cambridge Univ. Press, 1984.Google Scholar
  195. Gline, S.E., Nakamoto, A., Cho, S.-J., et al., Lineage analysis of micromere 4D, a super-phylotypic cell for Lophotrochozoa, in the leech Helobdella and the sludgeworm Tubifex, Dev. Biol., 2011, vol. 353, no. 1, pp. 120–133.PubMedCentralPubMedCrossRefGoogle Scholar
  196. Golikov, A.N. and Starobogatov, Ya.I., Problems of phylogeny and a system of Gastropods (Prosobranchia), in Sistematika i fauna bryukhonogikh, dvustvorchatykh i golovonogikh mollyuskov (Systematics and Fauna of Gastropoda, Bivalves, and Cephalopoda), Tr. Zool. Inst., Akad. Nauk SSSR, Skarlato, O.A., Ed., Leningrad: Zool. Inst., Akad. Nauk SSSR, 1988, vol. 176, pp. 4–77.Google Scholar
  197. Goudemand, N., Orchard, M.J., Urdy, S., et al., Synchrotron-aided reconstruction of the conodont feeding apparatus and implications for the mouth of the first vertebrate, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 21, pp. 8720–8724.PubMedCentralPubMedCrossRefGoogle Scholar
  198. Gould, S.J., Wonderful Life: The Burgess Shale and the Nature of History, New York: W.W. Norton, 1989.Google Scholar
  199. Grazhdankin, D., Patterns of distribution in Ediacaran biotas: facies versus biogeography and evolution, Paleobiology, 2004, vol. 30, no. 2, pp. 203–221.CrossRefGoogle Scholar
  200. Grazhdankin, D. and Gerdes, G., Ediacaran microbial colonies, Lethaia, 2007, vol. 40, no. 3, pp. 201–211.CrossRefGoogle Scholar
  201. Grazhdankin, D. and Seilacher, A., Underground Vendobionta from Namibia, Palaeontology, 2002, vol. 45, no. 1, pp. 57–78.CrossRefGoogle Scholar
  202. Grotzinger, J.P., Watters, W.A., and Knoll, A.H., Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia, Paleobiology, 2000, vol. 26, no. 3, pp. 334–359.CrossRefGoogle Scholar
  203. Haase, A., Stern, M., Wächtler, K., and Bicker, G., A tissue-specific marker of Ecdysozoa, Dev. Genes Evol., 2001, vol. 211, nos. 8–9, pp. 428–433.PubMedCrossRefGoogle Scholar
  204. Halanych, K.M., The new view of animal phylogeny, Annu. Rev. Ecol. Evol. Syst., 2004, vol. 35, pp. 229–256.CrossRefGoogle Scholar
  205. Halanych, K.M., Bacheller, J.D., Aguinaldo, A.M.A., et al., Evidence from 18S ribosomal DNA that the lophophorates are protostome, Science, 1995, vol. 267, no. 5204, pp. 1641–1643.PubMedCrossRefGoogle Scholar
  206. Halberg, K.A., Persson, D., Møbjerg, N., et al., Myoanatomy of the marine tardigrade Halobiotus crispae (Eutardigrada: Hypsibiidae), J. Morphol., 2009, vol. 270, no. 8, pp. 996–1013.PubMedCrossRefGoogle Scholar
  207. Han, Z. and Firtel, R.A., The homeobox-containing gene Wariai regulates anterior-posterior patterning and celltype homeostasis in Dictyostelium, Development, 1998, vol. 125, no. 2, pp. 313–325.PubMedGoogle Scholar
  208. Harvey, T.H.P., Dong, X., and Donoghue, P.C.J., Are palaeoscolecids ancestral ecdysozoans? Evol. Dev., 2010, vol. 12, no. 2, pp. 177–200.PubMedCrossRefGoogle Scholar
  209. Harvey, T.H.P., Ortega-Hernandez, J., Lin, J.-P., et al., Burgess Shale-type microfossils from the middle Cambrian Kaili Formation, Guizhou Province, China, Acta Palaeontol. Pol., 2012, vol. 57, no. 2, pp. 423–436.CrossRefGoogle Scholar
  210. Haug, J.T., Waloszek, D., Haug, C., and Maas, A., Highlevel phylogenetic analysis developmental sequences: the Cambrian Martinssonia elongate, Musacaris gerdgeyeri gen. et sp. nov. and their position in early crustacean evolution, Arthropod Struct. Dev., 2010, vol. 39, nos. 2–3, pp. 154–173.PubMedCrossRefGoogle Scholar
  211. Haug, J.T., Briggs, D.E.G., and Haug, C., Morphology and function in the Cambrian Burgess Shale megacheiran arthropod Leanchoilia superlata and the application of a descriptive matrix, BMC Evol. Biol., 2012, vol. 12, p. 162. doi 10.1186/1471-2148-12-162PubMedCentralPubMedCrossRefGoogle Scholar
  212. Heintz, C.E. and Pramer, D., Ultrastructure of nematodetrapping fungi, J. Bacteriol., 1972, vol. 110, no. 3, pp. 1163–1170.PubMedCentralPubMedGoogle Scholar
  213. Hejnol, A., Obst, M., Stamatakis, A., et al., Assessing the root of bilaterian animals with scalable phylogenomic methods, Proc. R. Soc. B, 2009, vol. 276, no. 1677, pp. 4261–4270.PubMedCentralPubMedCrossRefGoogle Scholar
  214. Hejnol, A. and Schnabel, R., The eutardigade Thulinia stephaniae has an indeterminate development and the potential to regulate blastomere ablations, Development, 2005, vol. 132, no. 6, pp. 1349–1361.PubMedCrossRefGoogle Scholar
  215. Helmkampf, M., Bruchhaus, I., and Hausdorf, B., Multigene analysis of lophophorate and chaetognath phylogenetic relationships, Mol. Phylogenet. Evol., 2008, vol. 46, no. 1, pp. 206–214.PubMedCrossRefGoogle Scholar
  216. Hermann, T.N. and Podkovyrov, V.N., A discovery of riphean heterotrophs in the lakhanda group of Siberia, Paleontol. J., 2010, vol. 44, no. 4, pp. 374–383.CrossRefGoogle Scholar
  217. Holmer, L.E., Pettersson Stolk, S., Skovsted, C.B., et al., The enigmatic Early Cambrian Salanygolina–A stem group of rhynchonelliform chiliate brachiopods? Palaeontology, 2009, vol. 54, no. 1, pp. 1–10.CrossRefGoogle Scholar
  218. Holmer, L.E., Popov, L., and Streng, M., Organophosphatic stem group brachiopods: implications for the phylogeny of the subphylum Linguliformea, Fossils Strata, 2008., no. 54, pp. 3–11.Google Scholar
  219. Holmer, L.E., Skovsted, C.B., Brock, G., et al., The Early Cambrian tommotiid Micrina, a sessile bivalved stem group brachiopod, Biol. Lett., 2008., vol. 4, no. 6, pp. 724–728.PubMedCentralPubMedCrossRefGoogle Scholar
  220. Holmer, L.E., Skovsted, C.B., Larsson, C., et al., First record of a bivalved larval shell in Early Cambrian tommotiids and its phylogenetic significance, Palaeontology, 2011, vol. 54, no. 2, pp. 235–239.CrossRefGoogle Scholar
  221. Holmer, L.E., Skovsted, C.B., and Williams, A., A stem group brachiopod from the Lower Cambrian: support for a Micrina (halkieriid) ancestry, Palaeontology, 2002, vol. 45, no. 5, pp. 875–882.CrossRefGoogle Scholar
  222. Hou, X.-G., Aldridge, R.J., Siveter, D.J., et al., New evidence on the anatomy and phylogeny of the earliest vertebrates, Proc. R. Soc. B, 2002, vol. 269, no. 1503, pp. 1865–1869.CrossRefGoogle Scholar
  223. Hou, X.-G., Aldridge, R.J., Siveter, D.J., et al., An early Cambrian hemichordate zooid, Curr. Biol., 2011, vol. 21, no. 7, pp. 612–616.PubMedCrossRefGoogle Scholar
  224. Hou, X. and Bergstrom, J., Cambrian lobopodians–ancestors of extant onychophorans? Zool. J. Linn. Soc., 1995, vol. 114, pp. 3–19.CrossRefGoogle Scholar
  225. Hou, X.-G., Bergstrom, J., and Jie, Y., Distinguishing anomalocaridids from arthropods and priapulids, Geol. J., 2006, vol. 41, nos. 3–4, pp. 259–269.Google Scholar
  226. Hou, X., Bergstrom, J., Wang, H., et al., The Chengjiang Fauna. Exceptionally well-preserved animals from 530 million years ago, Yunnan Sci. Tech. Press. 1999.Google Scholar
  227. Huang, D.-Y., Chen, J.-Y., Vannier, J., and Saiz Salinas, J.I., Early Cambrian sipunculan worms from southwest China, Proc. R. Soc. B, 2004, vol. 271, no. 1549, pp. 1671–1676.PubMedCentralPubMedCrossRefGoogle Scholar
  228. Huang, D., Chen, J., Zhu, M., and Zhao, F., The burrow dwelling behavior and locomotion of palaeoscolecidan worms: New fossil evidence from the Cambrian Chengjiang fauna, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2014, vol. 398, pp. 154–164.CrossRefGoogle Scholar
  229. Huldtgren, T., Cunningham, J.A., Yin, C., et al., Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists, Science, 2011, vol. 334, no. 6063, pp. 1696–1699.PubMedCrossRefGoogle Scholar
  230. Iten van, H., Cox, R.S., and Mapes, R.H., New data on the morphology of Sphenothallus Hall: Implications for its affinities, Lethaia, 1992, vol. 25, no. 2, pp. 135–144.CrossRefGoogle Scholar
  231. Iten van, H., Simoes, M.G., Marques, A., and Collins, A., Reassessment of the phylogenetic position of conulariids in the subphylum Medusozoa (phylum Cnidaria), J. Syst. Palaeontol., 2006, vol. 4, no. 2, pp. 109–118.CrossRefGoogle Scholar
  232. Iten van, H., Zhu, M., and Li, G., Re-description of Hexaconularia He and Yag, 1986.(Lower Cambrian, South China): implications for the affinities of conulariid-like small shelly fossils, Palaeontology, 2010, vol. 53, no. 1, pp. 191–199.CrossRefGoogle Scholar
  233. Ivantsov, A.Y. New Data on the Ultrastructure of Sabelliditids (Pogonophora?), Paleontol. J., 1990, vol. 24, no. 4, p. 125.Google Scholar
  234. Ivantsov, A.Yu., New proarticulata from the Vendian of the Arkhangelsk region, Paleontol. J., 2004, vol. 38, no. 3, pp. 247–253.Google Scholar
  235. Ivantsov, A.Y. Feeding traces of proarticulata the Vendian Metazoa, Paleontol. J., 2011, vol. 45, no. 3, pp. 237–248.CrossRefGoogle Scholar
  236. Ivantsov, A.Yu. and Malakhovskaya, Ya.E., Giant traces of Vendian animals, Dokl. Earth Sci., 2002. vol. 385A, no. 6, pp. 618–622.Google Scholar
  237. Ivantsov, A.Yu., Zhuravlev, A.Yu., Krasilov, V.A., et al., Unique Sinsk locations of Early Cambrian organisms (Siberian Plain), Tr. Palentol. Inst., Ross. Akad.. Nauk, 2005. vol. 284Google Scholar
  238. Ivantsov, A.Yu., Zhuravlev, A.Yu., Leguta, A.V., et al., Palaeoecology of the Early Cambrian Sinsk biota from the Siberian Platform, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2005, vol. 220, nos. 1–2, pp. 69–88.CrossRefGoogle Scholar
  239. Janssen, R. and Budd, G.E., Deciphering the onychophoran ‘segmentation gene cascade’: gene expression reveals limited involvement of pair rule gene orthologs in segmentation, but a highly conserved segment polarity gene network, Dev. Biol., 2013, vol. 382, no. 1, pp. 224–234.PubMedCrossRefGoogle Scholar
  240. Janussen, D., Steiner, M., and Zhu, M., New well-preserved scleritomes of Chancelloriidae from the Early Cambrian Yuanshan Formation (Chengjiang, China) and the Middle Cambrian Wheeler Shale (Utah, USA) and paleobiological implications, J. Palaeontol., 2002, vol. 76, no. 4, pp. 596–606.CrossRefGoogle Scholar
  241. Javaux, E.J. and Marshal, C.P., A new approach in deciphering early protist paleobiology and evolution: combined microscopy and microchemistry of single Proterozoic acritarchs, Rev. Palaeobot. Palynol., 2006, vol. 139, nos. 1–4, pp. 1–15.CrossRefGoogle Scholar
  242. Jefferies, R.P.S., The Ancestry of Vertebrates, London: Brit. Mus. Nat. Hist., 1986.Google Scholar
  243. Jenkins, R.J.F., Functional and ecological aspects of Ediacaran assemblages, in Origin and Early Evolution of the Metazoa, Topics Geobiol., Lipps, J.H. and Signor, P.W., Eds., New York: Plenum, 1992, vol. 10, pp. 131–176.CrossRefGoogle Scholar
  244. Jenner, R.A. and Littlewood, D.T.J., Problematica old and new, Philos. Trans. R. Soc., B, 2008, vol. 363, no. 1496, pp. 1503–1512.CrossRefGoogle Scholar
  245. Jensen, S., Buatois, L.A., and Mángano, M.G., Testing for palaeogeographical patterns in the distribution of Cambrian trace fossils, in Early Palaeozoic Biogeography and Palaeogeography, Geol. Soc. Lond. Mem., Harper, D.A.T. and Servais, T. Eds., London: Geol. Soc., 2013, vol. 38, pp. 45–58.CrossRefGoogle Scholar
  246. Jensen, S., Gehling, J.G., Droser, M.L., and Grant, S.W.F., A scratch circle origin for the medusoid fossil Kullingia, Lethaia, 2002, vol. 35, no. 4, pp. 291–299.CrossRefGoogle Scholar
  247. Jiménez-Guri, E., Philippe, H., Okamura, B., and Holland, P.W.H., Buddenbrockia is a cnidarians worm, Science, 2007, vol. 317, nos. 8–9, pp. 116–118.PubMedCrossRefGoogle Scholar
  248. Kerner, P., Degnan, S.M., Marchand, L., et al., Evolution of RNA-binding proteins in animals: Insights from genome-wide analysis in the sponge Amphimedon queenslandica, Mol. Biol. Evol., 2013, vol. 28, no. 8, pp. 2289–2303.CrossRefGoogle Scholar
  249. Kikumoto, R., Tahata, M., Nishizawa, M., et al., Nitrogen isotope chemostratigraphy of the Ediacaran and Early Cambrian platform sequence at Three Gorges, South China, Gondwana Res., 2014, vol. 25, no. 3, pp. 1057–1069.CrossRefGoogle Scholar
  250. Killian, C.E., Metzler, R.A., Gong, Y.U.T., et al., Mechanism of calcite co-orientation in the sea urchin tooth, J. Am. Chem. Soc., 2009. vol. 131, no. 51, pp. 18404–18409.PubMedCrossRefGoogle Scholar
  251. Kimm, M.A. and Prpic, N.-M., Formation of the arthropod labrum by fusion of paired and rotated limb-budlike primordia, Zoomorphology, 2006, vol. 125, no. 3, pp. 147–155.CrossRefGoogle Scholar
  252. Kouchinsky, A., Skeletal microstructure of hyoliths from the Early Cambrian of Siberia, Alcheringa, 2000, vol. 24, no. 2, pp. 65–81.CrossRefGoogle Scholar
  253. Kouchinsky, A. and Bengtson, S., The tube wall of Cambrian anabaritids, Acta Palaeontol. Pol., 2002, vol. 47, no. 3, pp. 431–444.Google Scholar
  254. Kouchinsky, A.V., Bengtson, S., and Gershwin, L.-A., Cnidarian-like embryos associated with the first shelly fossils in Siberia, Geology, 1999, vol. 27, no. 7, pp. 609–612.CrossRefGoogle Scholar
  255. Kouchinsky, A., Bengtson, S., Runnegar, B., et al., Chronology of early Cambrian biomineralization, Geol. Mag., 2012, vol. 149, no. 2, pp. 221–251.CrossRefGoogle Scholar
  256. Kouns, N.A., Nakielna, J., Behensky, F., et al., NHR-23 dependent collagen and hedgehog-related genes required for molting, Biochem. Biophys. Res. Commun., 2011, vol. 413, no. 3, pp. 515–520.PubMedCentralPubMedCrossRefGoogle Scholar
  257. Kozloff, E.N., Stages of development, from first cleavage to hatching, of an Echinoderes (Phylum Kinorhyncha: Class Cyclorhagida), Cah. Biol. Mar, 2007, vol. 48, no. 2, pp. 199–206.Google Scholar
  258. Kristensen, R.M., An introduction to Loricifera, Cycliophora, and Micrognathozoa, integr. Comp. Biol., 2002, vol. 42, no. 3, pp. 641–651.PubMedCrossRefGoogle Scholar
  259. Kroger, B., Vinther, J., and Fuchs, D., Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules, BioEssays, 2011, vol. 33, no. 8, pp. 602–613.PubMedCrossRefGoogle Scholar
  260. Kruse, P.D. and Zhuravlev, A.Yu., Middle-Late Cambrian Rankenella-Girvanella reefs of the Mila Formation, northern Iran, Can. J. Earth Sci., 2008, vol. 45, no. 6, pp. 619–639.CrossRefGoogle Scholar
  261. Kruse, P.D., Zhuravlev, A.Yu., and James, N.P., Primordial metazoan-calcimicrobial reefs: Tommotian (Early Cambrian) of the Siberian Platform, Palaios, 1995, vol. 10, no. 4, pp. 291–321.CrossRefGoogle Scholar
  262. Kuzdal-Fick, J.J., Foster, K.R., Queller, D.C., and Strassmann, J.E., Exploiting new terrain: an advantage to sociality in the slime mold Dictyostelium discoideum, Behav. Ecol., 2007, vol. 18, no. 2, pp. 433–437.CrossRefGoogle Scholar
  263. Lacalli, T., Protochordate body plan and the evolutionary role of larvae: old controversies resolved? Can. J. Zool., 2005, vol. 83, no. 1, pp. 216–224.CrossRefGoogle Scholar
  264. Lacalli, T., The Middle Cambrian fossil Pikaia and the evolution of chordate swimming, EvoDevo, 2012, vol. 3, p. 12. doi 10.1186/2041-9139-3-12PubMedCentralPubMedCrossRefGoogle Scholar
  265. Laflamme, M., Darroch, S.A.F., Tweedt, S.M., et al., The end of the Ediacara biota: Extinction, biotic replacement, or Cheshire Cat? Gondwana Res., 2013, vol. 23, no. 2, pp. 558–573.CrossRefGoogle Scholar
  266. Laflamme, M., Xiao, S., and Kowalewski, M., Osmotrophy in modular Ediacara organisms, Proc. Natl. Acad. Sci. U.S.A., 2009. vol. 106, no. 34, pp. 14438–14443.PubMedCentralPubMedCrossRefGoogle Scholar
  267. Lambert, J.D., Developmental patterns in spiralian embryos, Curr. Biol., 2010. vol. 20, no. 2, pp. R72–R77.PubMedCrossRefGoogle Scholar
  268. Land, M.F., The optical structures of animal eyes, Curr. Biol., 2005. vol. 15, no. 9, pp. R319–R323.PubMedCrossRefGoogle Scholar
  269. Landing, E., English, A., and Keppie, J.D., Cambrian origin of all skeletalized metazoan phyla–discovery of Earth’s oldest bryozoans (Upper Cambrian, southern Mexico), Geology, 2010, vol. 38, no. 6, pp. 547–550.Google Scholar
  270. Landing, E. and Kröger, B., The oldest cephalopods from East Laurentia, J. Paleontol., 2009, vol. 83, no. 1, pp. 123–127.CrossRefGoogle Scholar
  271. Larsson, C.M., Skovsted, C.B., Brock, G.A., et al., Paterimitra pyramidalis from South Australia: scleritome, shell structure, and evolution of a lower Cambrian stem group brachiopod, Palaeontology, 2014, vol. 57, no. 2, pp. 417–446.CrossRefGoogle Scholar
  272. Laurie, J.R., Phosphatic fauna of the Early Cambrian Todd River Dolomite, Amadeus Basin, central Australia, Alcheringa, 1986. vol. 10, nos. 3/4, pp. 432–454.Google Scholar
  273. Legg, D.A., Sutton, M.D., and Edgecombe, G.D., Arthropod fossil data increase congruence of morphological and molecular phylogenies, Nat. Commun., 2013, vol. 4, p. 2485. doi 10.1038/ncomms3485PubMedCrossRefGoogle Scholar
  274. Legg, D.A., Sutton, M.D., Edgecombe, G.D., and Caron, J.-B., Cambrian bivalved arthropod reveals origin of arthrodization, Proc. R. Soc. B, 2012, vol. 279, no. 1748, pp. 4699–4704.PubMedCentralPubMedCrossRefGoogle Scholar
  275. Lemburg, C., Ultrastrukturelle Untersuchungen an den Larven von Halicryptus spinulosus und Priapulus caudatus. Hypothesen zur Phylogenie der Priapulida und deren Bedeutung für die Evolution der Nemathelminthes, Göttingen: Cuviller, 1999.Google Scholar
  276. Li, C.-W., Chen, J.-Y., and Hua, T.-E., Precambrian sponges with cellular structures, Science, 1998, vol. 279, no. 5352, pp. 879–882.PubMedCrossRefGoogle Scholar
  277. Li, C., Love G.D., Lyons T.W., et al., A stratified redox model for the Ediacaran ocean, Science, 2010, vol. 328, no. 5974, pp. 80–83.PubMedCrossRefGoogle Scholar
  278. Linsley R.M. and Kier W.M. The Paragastropoda: a proposal for a new class of Paleozoic Mollusca, Malacologia, 1984, vol. 25, no. 1, pp. 241–254.Google Scholar
  279. Liu, P.-J., Chen, S.-M., Tang, F., and Gao, L.-Z., Affinity, distribution and stratigraphic significance of tubular microfossils from the Ediacaran Doushantuo Formation in South China, Acta. Palaeontol. Sin., 2010, vol. 49, no. 3, pp. 308–324.Google Scholar
  280. Liu, J., Han, J., and Simonetta, A.M., New observations of the lobopod-like worm Facivermis from the Early Cambrian Chengjiang Lagerstätte, Chin. Sci. Bull., 2006, vol. 51, no. 3, pp. 358–363.CrossRefGoogle Scholar
  281. Liu, J., Steiner, M., Dunlop, J.A., et al., An armored Cambrian lobopodian from China with arthropod-like appendages, Nature, 2011, vol. 470, no. 7335, pp. 526–530.PubMedCrossRefGoogle Scholar
  282. Liu, Y., Xiao, S., Shao, T., et al., The oldest known priapulid-like scalidophoran animal and its implications for the early evolution of cycloneuralians and ecdysozoans, Evol. Dev., 2014, vol. 16, no. 3, pp. 155–165.PubMedCrossRefGoogle Scholar
  283. Liu, P., Xiao, S., Yin, C., et al., Systematic description and phylogenetic affinity of tubular microfossils from the Ediacaran Doushantuo Formation at Wengan, South China, Palaeontology, 2008, vol. 51, no. 2, pp. 339–366.CrossRefGoogle Scholar
  284. Logan, G.A., Hayes, J.M., Heishima, G.B., and Summons, R.E., Terminal Proterozoic reorganization of biogeochemical cycles, Nature, 1995, vol. 376, no. 6535, pp. 53–56.PubMedCrossRefGoogle Scholar
  285. Love, G.D., Grosjean, E., Stalvies, C., et al., Fossil steroids record the appearance of Demospongiae during the Cryogenian period, Nature, 2009, vol. 457, no. 7230, pp. 718–721.PubMedCrossRefGoogle Scholar
  286. Lowe, C.J., Molecular genetic insights into deuterostome evolution from the direct-developing hemichordate Saccoglossus kowalevskii, Philos. Trans. R. Soc., B, 2008, vol. 363, no. 1496, pp. 1569–1578.CrossRefGoogle Scholar
  287. Lyubishchev, A.A., Problemy formy, sistematiki i evolyutsii organismov (Problems of Form, Systematics, and Evolution of Organisms), Moscow: Nauka, 1982.Google Scholar
  288. Ma, X., Edgecombe, G.D., Legg, D.A., and Hou, X., The morphology and phylogenetic position of the Cambrian lobopodian Diania cactiformis, J. Syst. Palaeontol., 2014, vol. 12, no. 4, pp. 445–457.CrossRefGoogle Scholar
  289. Ma, X., Hou, X., and öBergstrm, J., Morphology of Luolishania longicruris (Lower Cambrian, Chengjiang Lagerstätte, SWChina) and the phylogenetic relationships within lobopodians, Arthropod Struct. Dev., 2009, vol. 38, no. 4, pp. 271–291.PubMedCrossRefGoogle Scholar
  290. Ma, X., Hou, X., Edgecombe, G.D., and Strausfeld, N.J., Complex brain and optic lobes in an early Cambrian arthropod, Nature, 2012, vol. 490, no. 7419, pp. 258–261.PubMedCrossRefGoogle Scholar
  291. Maas, A., Braun, A., Dong, X.-P., et al., The ‘Orsten’–more than a Cambrian Konsrvat-Lagerstatte yielding exceptional preservation, Palaeoworld, 2006, vol. 15, nos. 3–4, pp. 266–282.CrossRefGoogle Scholar
  292. Maas, A. and Waloszek, D., Cambrian derivatives of the early arthropod stem lineage, pentastomids, tardigrades and lobopodians–an ‘Orsten’ perspective, Zool. Anz., 2001, vol. 240, nos. 3–4, pp. 451–459.CrossRefGoogle Scholar
  293. Maas, A., Waloszek, D., Haug, J.T., and Müller, K.J., A possible larval roundworm from the Cambrian ‘Orsten’ and its bearing on the phylogeny of Cycloneuralia, Mem. Assoc. Australas. Palaeontol., 2007, vol. 34, pp. 499–519.Google Scholar
  294. Maas, A., Waloszek, D., Haug, J.T., and Müller, K.J., Loricate larva (Scalidophora) from the Middle Cambrian of Australia, Mem. Assoc. Australas. Palaeontol., 2009, vol. 37, pp. 281–302.Google Scholar
  295. Malakhov, V.V., Problem of the basic structure in different groups of deuterostome animals, Zh. Obshch. Biol., 1977, vol. 38, no. 4, pp. 485–499.Google Scholar
  296. Malakhov, V.V. Cephalorhyncha is a new type of fauna uniting Priapulida, Kinorhyncha, Gordiacea, and a system of Nemathelminthes, Zool. Zh., 1980, vol. 59, no. 4, pp. 485–499.Google Scholar
  297. Malakhov, V.V., New views on the origin of bilateral animals (Bilateria), Biol. Bull. Rev., 2004, vol. 65, no. 5, p. 325.Google Scholar
  298. Malakhov, V.V., A new system of Bilateria, Herald Russ. Acad. Sci., 2010, vol. 80, no. 1, pp. 29–41.CrossRefGoogle Scholar
  299. Malakhov, V.V. and Andrianov, A.V., Golovokhobotnye (Cephalorhyncha)–novyi tip zhivotnogo tsarstva (Cephalorhyncha as the New Type of Animals), Moscow: KMK, 1995.Google Scholar
  300. Malakhov, V.V. and Kuzmina, T.V., Metameric origin of lateral mesenteries in Brachiopoda, Dokl. Biol. Sci., 2006, vol. 409, no. 1, pp. 340–342.CrossRefGoogle Scholar
  301. Malakhovskaya, Y.E., Shell structure of Kutorgina billings (Brachiopoda, Kutorginida), Paleontol. J., 2008, vol. 42, no. 5, pp. 479–490.CrossRefGoogle Scholar
  302. Maldonado, M., Choanoflagellates, choanocytes, and animal multicellularity, invertebr. Biol., 2004, vol. 123, no. 1, pp. 1–22.CrossRefGoogle Scholar
  303. Maletz, J., Hemichordata (Pterobranchia, Enteropneusta) and the fossil record, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2014, vol. 398, pp. 16–27.CrossRefGoogle Scholar
  304. Maloof, A.C., Porter, S.M., Moore, J.L., et al., The earliest Cambrian record of animals and ocean geochemical change, GSA Bull., 2010., vol. 122, no. 11–12, pp. 1731–1774.CrossRefGoogle Scholar
  305. Maloof, A.C., Rose, C.V., Beach, R., et al., Possible animal-body fossils in pre-Marinoan limestones from South Australia, Nat. Geosci., 2010., vol. 3, no. 9, pp. 653–659.CrossRefGoogle Scholar
  306. Mángano, M.G. and Buatois, L.A., Decoupling of bodyplan diversification and ecological structuring during the Ediacaran–Cambrian transition: evolutionary and geobiological feedback, Proc. R. Soc. B, 2014, vol. 281, p. 20140038. 0038PubMedCentralPubMedCrossRefGoogle Scholar
  307. Mángano, M.G., Buatois, L.A., Astini, R., and Rindsberg, A.K., Trilobites in early Cambrian tidal flats and the landward expansion of Cambrian explosion, Geology, 2014, vol. 42, no. 2, pp. 143–146.CrossRefGoogle Scholar
  308. Marlétaz, F., Gilles, A., Caubit, X., et al., Chaetognath transcriptome reveals ancestral and unique features among bilaterians, Genome Biol., 2008. vol. 9, no. 6, p. R94. doi 10.1186/gb-2008-9-6-r94PubMedCentralPubMedCrossRefGoogle Scholar
  309. Martí Mus, M. and Bergstrom, J., Skeletal microstructure of Helens, lateral spines of hyolithids, Palaeontology, 2007, vol. 50, no. 5, pp. 1231–1243.CrossRefGoogle Scholar
  310. Martin, C. and Mayer, G., Neuronal tracing of oral nerves in a velvet worm–implications for the evolution of the ecdysozoan brain, Front. Neuroanat., 2014. vol. 8, no. 7. doi 10.3389/fnana.2014.00007Google Scholar
  311. Martin, M.W., Grazhdankin, D.V., Bowring, S.A., et al., Age of Neoproterozoic bilatarian [sic!] body and trace fossils, White Sea, Russia: implications for metazoan evolution, Science, 2000, vol. 288, no. 5467, pp. 841–845.PubMedCrossRefGoogle Scholar
  312. Martindale, M.Q., Evolution of development: the details are in the entrails, Curr. Biol., 2013. vol. 23, no. 1, pp. R25–R28.PubMedCrossRefGoogle Scholar
  313. Martindale, M.Q. and Hejnol, A., A developmental perspective: changes in the position of the blastopore during bilaterian evolution, Dev. Cell, 2009, vol. 17, no. 2, pp. 162–174.PubMedCrossRefGoogle Scholar
  314. Martín-Durán, J.M., Janssen, R., Wennberg, S., et al., Deuterostomic development in protostome Priapulus caudatus, Curr. Biol., 2012, vol. 22, no. 22, pp. 2161–2166.PubMedCrossRefGoogle Scholar
  315. Marusin, V.V., Grazhdankin, D.V., and Maslov, A.V., Redkino stage in evolution of Vendian macrophytes, Dokl. Earth Sci., 2011, vol. 436, no. 2, pp. 197–202.CrossRefGoogle Scholar
  316. Maslakova, S.A., Martindale, M.Q., and Norenburg, J.L., Vestigial prototroch in a basal nemertean, Carinoma tremaphoros (Nemertea; Palaeonemertea), Evol. Dev., 2004, vol. 6, no. 4, pp. 219–226.PubMedCrossRefGoogle Scholar
  317. Matz, M.V., Frank, T.M., Marshall, N.J., et al., Giant deep-sea protist produces bilaterian-like traces, Curr. Biol., 2008, vol. 18, no. 23, pp. 1849–1854.PubMedCrossRefGoogle Scholar
  318. Mayer, G., Structure and development of onychophoran eyes: what is the ancestral visual organ in arthropods? Arthropod Struct. Dev., 2006, vol. 35, no. 4, pp. 231–245.PubMedCrossRefGoogle Scholar
  319. Mayer, G. and Harzsch, S., Immunolocalization of serotonin in Onychophora argues against segmented ganglia being an ancestral feature of arthropods, BMC Evol. Biol., 2007, vol. 7, p. 118. doi 10.1186/1471-2148-7118PubMedCentralPubMedCrossRefGoogle Scholar
  320. Mayer, G. and Koch, M., Ultrastructure and fate of nephridial anlagen in the antennal segment of Epiperipatus biolleyi (Onychophora, Peripatidae)–evidence for the onychophoran antennae being modified legs, Arthropod Struct. Dev., 2005, vol. 34, no. 4, pp. 471–480.CrossRefGoogle Scholar
  321. Mazurek, D. and Zatón, M., Is Nectocaris pteryx a cephalopod? Lethaia, 2011, vol. 44, no. 1, pp. 2–4.CrossRefGoogle Scholar
  322. Mel’nikov, O.A., Embryogenesis of Anacanthotermes ahngerianus (Isoptera, Hodotermitidae), larval segmentation and a nature of labrum, Zool. Zh., 1970, vol. 49, no. 6, pp. 838–854.Google Scholar
  323. Mel’nikov, O.A., tEs’kov, K.Yu., and Rasnitsyn, A.P., To promorphology of Chelicerata, Izv. Akad. Nauk SSSR, Ser. Biol., 1992. no. 3, pp. 405–416.Google Scholar
  324. Merz, R.A. and Woodin, S.A., Polychaete chaetae: function, fossils, and phylogeny, integr. Comp. Biol., 2006, vol. 46, no. 4, pp. 481–496.PubMedCrossRefGoogle Scholar
  325. Meyer, M., Schiffbauer, J.D., Xiao, S., et al., Taphonomy of the upper Ediacaran enigmatic ribbon-like fossil Shaanxilithes, Palaios, 2012, vol. 27, no. 5, pp. 354–372.CrossRefGoogle Scholar
  326. Meyer, N.P., Boyle, M.J., Martindale, M.Q., and Seaver, E.C., A comprehensive fate map by intracellular injection of identified blastomeres in the marine polychaete Capitella teleta, EvoDevo, 2010, vol. 1, p. 8. doi 10.1186/2041-9139-1-8PubMedCentralPubMedCrossRefGoogle Scholar
  327. Mierzejewski, P. and Kulicki, C., Graptolite-like fibril pattern in the fusellar tissue of Palaeozoic rhabdopleurid pterobranchs, Acta Palaeontol. Pol., 2001, vol. 46, no. 3, pp. 349–366.Google Scholar
  328. Mikhailov, K.V., Konstantinova, A.V., Nikitin, M.A., et al., The origin of Metazoa: a transition from temporal to spatial cell differentiation, BioEssays, 2009, vol. 31, no. 7, pp. 758–768.PubMedCrossRefGoogle Scholar
  329. Missarzhevskii, V., Drevneishie skeletnye okamenelosti i stratigrafiya pogranichnykh tolshch dokembriya i kembriya (The Ancient Skeletal Fossils and Stratigraphy of Border Strata of Precambrian and Cambrian), Tr. Geol. Inst., Akad. Nauk SSSR, Moscow: Nauka, 1989. vol. 443.Google Scholar
  330. Miyazaki, K., On the shape of the foregut lumen in sea spiders (Arthropoda: Pycnogonida), J. Mar. Biol. Assoc. U.K., 2002, vol. 82, no. 6, pp. 1037–1038.CrossRefGoogle Scholar
  331. Morris, V.B., Origins of radial symmetry identified in an echinoderm during adult development and the inferred axes of ancestral bilateral symmetry, Proc. R. Soc. B, 2007, vol. 274, no. 1617, pp. 1511–1516.PubMedCentralPubMedCrossRefGoogle Scholar
  332. Morse, J.W., Andersson, A.J., and Mackenzie, F.T., Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: role of high Mg-calcites, Geochim. Cosmochim. Acta, 2006, vol. 70, no. 23, pp. 5814–5830.CrossRefGoogle Scholar
  333. Mounce, R.C.P. and Wills, M.A., Phylogenetic position of Diania challenged, Nature, 2011. vol. 476, no. 7359, p. E1.PubMedCrossRefGoogle Scholar
  334. Müller, K.J., Phosphatocopine ostracodes with preserved appendages from the Upper Cambrian of Sweden, Lethaia, 1979, vol. 12, no. 1, pp. 1–27.CrossRefGoogle Scholar
  335. Müller, K.J. and Hinz-Schallreuter, I., Palaeoscolecid worms from the Middle Cambrian of Australia, Palaeontology, 1993, vol. 36, no. 3, pp. 549–592.Google Scholar
  336. Müller, W.E.G., Li, J., Schröder, H.C., et al., The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review, Biogeosciences, 2007, vol. 4, no. 1, pp. 219–232.CrossRefGoogle Scholar
  337. Murdock, D.E.J., Donoghue, P.C.J., Bengtson, S., and Marone, F., Ontogeny and microstructure of the enigmatic Cambrian tommotiid Sunnaginia Missarzhevsky, 1969. Palaeontology, 2012, vol. 55, no. 3, pp. 661–676.CrossRefGoogle Scholar
  338. Mutvei, H., Zhang, Y.-B., and Dunca, E., Late Cambrian plectronocerid nautiloids and their role in cephalopod evolution, Palaeontology, 2007, vol. 50, no. 6, pp. 1327–1333.CrossRefGoogle Scholar
  339. Nagovitsin, K.E., Biodiversity of fungi on the border of Mesoand Neoproterozoic (Lakhandinskaya biota, Eastern Siberia), nov. Paleontol. Stratigr., 2008. vol. 49, no. 10–11, pp. 147–151.Google Scholar
  340. Naimark, E.B. and Ivantsov, A.Yu., Growth variability in the late Vendian problematics Parvancorina Glaessner, Paleontol. J., 2009, vol. 43, no. 1, pp. 12–18.CrossRefGoogle Scholar
  341. Nakano, H., Lindin, K., Bourlat, S.J., et al., Xenoturbella exhibits direct development with similarities to Acoelomorpha, Nat. Commun., 2013, vol. 4, p. 1537. doi 10.1038/ncomms2556PubMedCentralPubMedCrossRefGoogle Scholar
  342. Nemliher, J. and Kallaste, T., Conodont bioapatite resembles vertebrate enamel by XRD properties, Est. J. Earth Sci., 2012, vol. 61, no. 3, pp. 191–192.CrossRefGoogle Scholar
  343. Nesnidal, M.P., Helmkampf, M., Meyer, A., et al., New phylogenomic data support the monophyly of Lophophorata and an Ectoproct–Phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias, BMC Evol. Biol., 2013, vol. 13, p. 253. Scholar
  344. Neuhaus, B., Bresciani, J., and Peters, W., Ultrastructure of the pharyngeal cuticle and lectin labeling with wheat germ agglutinin-gold conjugate indicating chitin in the pharyngeal cuticle of Oesophagostomum dentatum (Strongylida, Nematoda), Acta Zool. (Stockholm), 1997, vol. 78, no. 3, pp. 205–213.CrossRefGoogle Scholar
  345. Neuhaus, B., Kristensen, R.M., and Lemburg, C., Ultrastructure of the cuticle of the Nemathelminthes and electron miscroscopical localization of chitin, Verh. Dtsch. Zool. Ges., 1996. vol. 89, pp. 221.Google Scholar
  346. Nichols, S.A., Roberts, B.W., Richter, D.J., et al., Origin of metazoan cadherin diversity and the antiquity of the claßsical cadherin/ß-catenin complex, Proc. Natl. Acad. Sci. U.S.A., 2012. vol. 109, no. 32, pp. 13046–13051.PubMedCentralPubMedCrossRefGoogle Scholar
  347. Nielsen, C., The development of the brachiopod Crania (Neocrania) anomala (O.F. Muller) and its phylogenetic significance, Acta Zool. (Stockholm), 1991, vol. 72, no. 1, pp. 7–28.CrossRefGoogle Scholar
  348. Nielsen, C., Animal Evolution: Interrelationships of the Living Phyla, Oxford: Oxford Univ. Press, 1995. 1st ed.Google Scholar
  349. Nielsen, C., Animal Evolution: Interrelationships of the Living Phyla, Oxford: Oxford Univ. Press, 2001. 2nd ed.Google Scholar
  350. Nielsen, C., Proposing a solution to the Articulata–Ecdysozoa controversy, Zool. Scr., 2003, vol. 32, no. 5, pp. 475–482.CrossRefGoogle Scholar
  351. Nielsen, C., How to make a protostome, invertebr. Syst., 2012, vol. 26, no. 1, pp. 25–40.CrossRefGoogle Scholar
  352. Nielsen, C., Life cycle evolution: was the eumetazoan ancestor a holopelagic, planktotrophic gastraea? BMC Evol. Biol., 2013, vol. 13, p. 171. doi 10.1186/14712148-13-171PubMedCentralPubMedCrossRefGoogle Scholar
  353. Nielsen, C., Haszprunar, G., Ruthensteiner, B., and Wanninger, A., Early development of the aplacophoran mollusk Chaetoderma, Acta Zool. (Stockholm), 2007, vol. 88, no. 3, pp. 231–247.CrossRefGoogle Scholar
  354. Nomaksteinsky, M., Röttinger, E., Dufour, H.D., et al., Centralization of the deuterostome nervous system predates chordates, Curr. Biol., 2009, vol. 19, no. 15, pp. 1–6.CrossRefGoogle Scholar
  355. Nosenko, T., Schreiber, F., Adamska, M., et al., Deep metazoan phylogeny: when different genes tell different stories, Mol. Phylogenet. Evol., 2013, vol. 67, no. 1, pp. 223–233.PubMedCrossRefGoogle Scholar
  356. Nützel, A., Lehnert, O., and Frýda, J., Origin of planktotrophy–evidence from early mollusks: a response to Freeman and Lundelius, Evol. Dev., 2007, vol. 9, no. 4, pp. 313–318.PubMedCrossRefGoogle Scholar
  357. Oeschger, R., Long-term anaerobiosis in sublittoral marine invertebrates from the Western Baltic Sea: Halicryptus spinulosus (Priapulida), Astarte borealis, and Arctica islandica (Bivalvia), Mar. Ecol.: Progr. Ser., 1990, vol. 59, pp. 133–143.CrossRefGoogle Scholar
  358. Ogino, K., Tsuneki, K., and Furuya, H., Unique genome of dicyemid mesozoan: highly shortened spliceosomal introns in conservative exon/intron structure, Gene, 2010. vol. 449, no. 1–2, pp. 70–76.PubMedCrossRefGoogle Scholar
  359. Ou, Q., Conway Morris, S., Han, J., et al., Evidence for gill slits and pharynx in Cambrian vetulicolians: implications for the early evolution of deuterostomes, BMC Biol., 2012., vol. 10, p. 81. doi 10.1186/1741-7007-1081PubMedCentralPubMedCrossRefGoogle Scholar
  360. Ou, Q., Liu, J., Shu, D., et al., A rare onychophoran-like lobopodian from the Lower Cambrian Chengjiang Lagerstatte, southwestern China, and its phylogenetic implications, J. Paleontol., 2011, vol. 85, no. 3, pp. 587–594.CrossRefGoogle Scholar
  361. Ou, Q., Shu, D., and Mayer, G., Cambrian lobopodians and extant onychophorans provide new insights into early cephalisation in Panarthropoda, Nat. Commun., 2012., vol. 3, p. 1261. doi 10.1038/ncomms2272PubMedCentralPubMedCrossRefGoogle Scholar
  362. Panganiban, G., Irvine, S.M., and Lowe, C., The origin and evolution of animal appendages, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, no. 10, pp. 5162–5166.PubMedCentralPubMedCrossRefGoogle Scholar
  363. Paps, J., Baguna, J., and Riutort, M., Lophotrochozoa internal phylogeny: new insights from an up-to-date analysis of nuclear ribosomal genome, Proc. R. Soc. B, 2009, vol. 276, no. 1660, pp. 1245–1254.PubMedCentralPubMedCrossRefGoogle Scholar
  364. Park, T.-Y., Woo, J., Lee, D.-J., et al., A stem-group cnidarian described from the mid-Cambrian of China and its significance for cnidarian evolution, Nat. Commun., 2011. vol. 2: 442. doi 10.1038/ncomms1457PubMedCentralPubMedCrossRefGoogle Scholar
  365. Parkhaev, P.Yu., Siphonoconcha–a new class of Early Cambrian bivalved organisms, Paleontol. J., 1998, vol. 32, no. 1, pp. 1–15.Google Scholar
  366. Parkhaev, P.Yu., New data on the morphology of shell muscles in Cambrian helcionelloid mollusks, Paleontol. J., 2004, vol. 38, no. 3, pp. 254–256.Google Scholar
  367. Parkhaev, P.Yu., The Early Cambrian radiation of Mollusca, in Phylogeny and Evolution of the Mollusca, Ponder, W.F. and Lindberg, D.R., Eds., Berkeley, California: Univ. California Press, 2008, pp. 33–69.CrossRefGoogle Scholar
  368. Parkhaev, P.Yu., Structure of shell muscles in the Cambrian gastropod genus Bemella (Gastropoda: Archaeobranchia: Helcionellidae), Paleontol. J., 2014, vol. 48, no. 1, pp. 17–25.CrossRefGoogle Scholar
  369. Passamaneck, Y. and Halanych, K.M., Lophotrochozoan phylogeny assessed with LSU and SSU data: Evidence of lophophorate polyphyly, Mol. Phylogenet. Evol., 2006, vol. 40, no. 1, pp. 20–28.PubMedCrossRefGoogle Scholar
  370. Paterson, J.R., Garcia-Bellido, D.C., Lee, M.S.Y., et al., Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes, Nature, 2011, vol. 480, no. 7376, pp. 237–240.PubMedCrossRefGoogle Scholar
  371. Peel, J.S., Functional morphology, evolution, and systematics of Early Palaeozoic univalved molluscs, Grønl. Geol. Unders, 1991. no. 161, pp. 1–116.Google Scholar
  372. Peel, J.S., A corset-like fossil from the Cambrian Sirius Passet Lagerstätte of North Greenland and its implications for cycloneuralian evolution, J. Paleontol., 2010, vol. 84, no. 2, pp. 332–340.CrossRefGoogle Scholar
  373. Pennerstorfer, M., Early cleavage in Phoronis muelleri (Phoronida) displays spiral features, Evol. Dev., 2012, vol. 14, no. 6, pp. 484–500.PubMedCrossRefGoogle Scholar
  374. Peters, K.E. and Moldowan, J.M., The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments, Englewood Cliffs, NJ: Prentice Hall, 1993.Google Scholar
  375. Peterson, K.J., Waggoner, B., and Hagadorn, J.W., A fungal analog for Newfoundland Ediacaran fossils? Integr. Comp. Biol., 2003, vol. 43, no. 1, pp. 127–136.PubMedCrossRefGoogle Scholar
  376. Peterson, K.J., Lyons, J.B., Nowak, K.S., et al., Estimating metazoan divergence times with a molecular clock, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 17, pp. 6536–6541.PubMedCentralPubMedCrossRefGoogle Scholar
  377. Philip, G.K., Creevey, C.J., and McInerney, J.O., The Opisthokonta and the Ecdysozoa may not be clades: stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the Coelomata than Ecdysozoa, Mol. Biol. Evol., 2005, vol. 22, no. 5, pp. 1175–1184.PubMedCrossRefGoogle Scholar
  378. Philippe, H., Brinkmann, H., Copley, R.R., et al., Acoelomorph flatworms are deuterostomes related to Xenoturbella, Nature, 2011, vol. 470, no. 7333, pp. 255–258.PubMedCentralPubMedCrossRefGoogle Scholar
  379. Pi, D.-H., Liu, C.-Q., Shields-Zhou, G., and Jiang, S.-Y., Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province, South China: Constraints for redox environments and origin of metal enrichments, Precambrian Res., 2013, vol. 225, pp. 218–229.CrossRefGoogle Scholar
  380. Pick, K.S., Philippe, H., Schreiber, F., et al., Improved phylogenomic taxon sampling noticeably affects nonbilaterian relationships, Mol. Biol. Evol., 2010, vol. 27, no. 9, pp. 1983–1987.PubMedCentralPubMedCrossRefGoogle Scholar
  381. Plazzi, Q., Ribani, A., and Passamonti, M., The complete mitochondrial genome of Solemya velum (Mollusca: Bivalvia) and its relationships with Conchifera, BMC Genomics, 2013, vol. 14, p. 409. doi 10.1186/14712164-14-409PubMedCentralPubMedCrossRefGoogle Scholar
  382. Plotnick, R.E., Paleobiology of the arthropod cuticle, in Arthropod Paleobiology: Short Courses in Paleontology, Mikulic, D.G., Ed., Knoxville, Tennessee: Paleontol. Soc. Publ., Univ. Tennessee, 1990, vol. 3, pp. 177–196.Google Scholar
  383. Podar, M., Haddock, S.H., Sogin, M.L., and Harbison, G.R., Phylogenetic framework for the phylum Ctenophora using 18S rRNA genes, Mol. Phylogenet. Evol., 2001, vol. 21, no. 2, pp. 218–230.PubMedCrossRefGoogle Scholar
  384. Pojeta, J., and Runnegar, B., The paleontology of rostroconch mollusks and the early history of the phylum Mollusca, U.S. Geol. Surv. Prof. Pap., 1976, vol. 968, pp. 1–88.Google Scholar
  385. Ponder, W.F., Parkhaev, P.Yu., and Beechey, D.L., A remarkable similarity in scaly shell structure in Early Cambrian univalved limpets (Monoplacophora; Maikhanellidae) and a Recent fissurellid limpet (Gastropoda: Vetigastropoda) with a review of Maikhanellidae, Mollusc. Res., 2007, vol. 27, no. 3, pp. 153–163.Google Scholar
  386. Ponomarenko, A.G., Paleobiology of angiospermization, Paleontol. J., 1998, vol. 32, no. 4, pp. 325–331.Google Scholar
  387. Ponomarenko, A.G., Arthropodization and its ecological consequences, in Ekosistemnye perestroiki i evolyutsiya biosfery (Ecosystem Transformations and Evolution of Biosphere), Moscow: Paleontol. Inst., Ross. Akad. Nauk, 2004. no. 6, pp. 7–22.Google Scholar
  388. Ponomarenko, A.G., Early stages of evolution of Arthropods, in Vvedeniev paleoentomologiyu (Introduction ot Paleoenthomology), Zherikhin, V.V., Ponomarenko, A.G., and Rasnitsyn, A.P., Eds., Moscow: KMK, 2008, pp. 254–279.Google Scholar
  389. Popov, L.E., Bassett, M.G., and Holmer, L.E. Earliest ontogeny of Early Paleozoic Craniiformea: compelling evidence for lecitotrophy, Lethaia, 2012, vol. 45, no. 4, pp. 566–573.CrossRefGoogle Scholar
  390. Popov, L.E., Holmer, L.E., and Bassett, M.G., Radiation of the earliest calcareous brachiopods, in Brachiopods, Copper, P. and Jin, J., Eds., Rotterdam: Balkema, 1996, pp. 209–213.Google Scholar
  391. Porter, S.M., The Proterozoic fossil record of heterotrophic eukaryotes, in Neoproterozoic Geobiology and Paleobiology, Topics Geobiol., Xiao, S. and Kaufman, A.J., Eds., Dordrecht: Springer-Verlag, 2006, vol. 27, pp. 1–21.CrossRefGoogle Scholar
  392. Porter, S.M., Skeletal microstructure indicates chancelloriids and halkieriids are closely related, Palaeontology, 2008, vol. 51, no. 4, pp. 865–879.CrossRefGoogle Scholar
  393. Porter, S.M., Calcite and aragonite seas and the de novo acquisition of carbonate skeletons, Geobiology, 2010, vol. 8, no. 4, pp. 256–277.PubMedCrossRefGoogle Scholar
  394. Prpic, N.-M., Parasegmental appendage allocation in annelids and arthropods and the homology of parapodia and arthropodia, Front. Zool., 2008, vol. 5, p. 17. doi 10.1186/1742-9994-5-17PubMedCentralPubMedCrossRefGoogle Scholar
  395. Prud’homme, B., de Rosa, R., Arendt, D., et al., Arthropod-like expression patterns of engrailed and wingless in the annelid Platynereis dumerilii suggest a role in segment formation, Curr. Biol., 2003, vol. 13, no. 21, pp. 1876–1881.PubMedCrossRefGoogle Scholar
  396. Putnam, N.H., Butts, T., Ferrier, D.E., et al., The amphioxus genome and the evolution of the chordate karyotype, Nature, 2008, vol. 453, no. 7198, pp. 1064–1072.PubMedCrossRefGoogle Scholar
  397. Raff, R.A., Origins of the other metazoan body plans: the evolution of larval forms, Philos.Google Scholar
  398. Ramsköld, L. and Chen, J., Cambrian lobopodians: Morphology and phylogeny, in Arthropod Fossils and Phylogeny, Edgecombe, G.D., Ed., New York: Columbia Univ. Press, 1998, pp. 107–150.Google Scholar
  399. Reitner, J. and Wörheide, G., Non-lithistid fossil Demospongiae–Origins of their palaeobiodiversity and highlights in history of preservation, in Systema Porifera: A Guide to the Classification of Sponges, Hooper, J.N.A. and van Soest, R.W.M., Eds., New York: Kluwer, 2002, vol. 1, pp. 52–68.CrossRefGoogle Scholar
  400. Retallack, G.J., Were the Ediacaran fossils lichens? Paleobiology, 1994, vol. 20, no. 4, pp. 523–544.Google Scholar
  401. Reuter, O.M., Lebensgewohnheiten und Instinkte der Insekten bis zum Erwachen der Sozialen Instinkte, Berlin: R. Friedlander and Sohn, 1913.Google Scholar
  402. Rigby, J.K. and Hou, X.-G., Lower Cambrian demosponges and hexactinellid sponges from Yunnan, China, J. Paleontol., 1995, vol. 69, no. 6, pp. 1009–1019.Google Scholar
  403. Rigby, J.K. and Collins, D., Sponges of the Middle Cambrian Burgess Shale and Stephen formations, British Columbia, ROM Contrib. Sci., 2004, vol. 1, pp. 1–155.Google Scholar
  404. Rigby, S. and Milsom, C.V., Origins, evolution, and diversification of zooplankton, Annu. Rev. Ecol. Syst., 2000, vol. 31, pp. 293–313.CrossRefGoogle Scholar
  405. Robson, E.A., The cuticle of Peripatopsis moseleyi, Quart. J. Microsc. Sci., 1964, vol. 105, no. 3, pp. 281–299.Google Scholar
  406. Rota-Stabelli, O., Daley, A.C., and Pisani, D., Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution, Curr. Biol., 2013, vol. 23, no. 5, pp. 392–398.PubMedCrossRefGoogle Scholar
  407. Rouse, G.W., Trochophore concepts: ciliary bands and the evolution of larvae in spiralian Metazoa, Biol. J. Linn. Soc. Lond., 1999, vol. 66, no. 4, pp. 411–464.CrossRefGoogle Scholar
  408. Rozhnov, S.V., From Vendian to Cambrian: The beginning of morphological disparity of modern metazoan phyla, Russ. J. Dev. Biol., 2010, vol. 41, no. 6, pp. 357–368.CrossRefGoogle Scholar
  409. Rozhnov, S.V., The anteroposterior axis in echinoderms and displacement of the mouth in their phylogeny and ontogeny, Biol. Bull., 2012, vol. 39, no. 2, pp. 162–171.CrossRefGoogle Scholar
  410. Rozov, S.N., Morphology, terminology, and systematic position of stenotecoids, in Problematika paleozoya i mezozoya (Problems of Paleozoic and Mesozoic), Tr. Inst. Geol. Geofiz., Sib. Otd., Akad. Nauk SSSR, Sokolov, B.S., Ed., Moscow: Nauka, 1984. no. 597, pp. 177–133.Google Scholar
  411. Ruben, J.A. and Bennett, A.A., The evolution of bone, Evolution, 1987, vol. 41, no. 6, pp. 1187–1197.CrossRefGoogle Scholar
  412. Runnegar, B., Early evolution of the Mollusca, in Origin and Evolutionary Radiation of the Mollusca, Taylor, J., Ed., Oxford: Oxford Univ. Press, 1996, pp. 77–87.Google Scholar
  413. Runnegar, B., No evidence for planktotrophy in Cambrian mollusks, Evol. Dev., 2007, vol. 9, no. 4, pp. 311–312.PubMedCrossRefGoogle Scholar
  414. Runnegar, B., Once again: Is Nectocaris pteryx a stemgroup cephalopod? Lethaia, 2011, vol. 44, no. 4, p. 373.CrossRefGoogle Scholar
  415. Runnegar, B. and Jell, P.A., Australian Middle Cambrian mollusks and their bearing on early molluscan evolution, Alcheringa, 1976, vol. 1, no. 2, pp. 109–138.CrossRefGoogle Scholar
  416. Runnegar, B., Pojeta, J., Morris, N.J., et al., Biology of the hyolitha, Lethaia, 1975, vol. 6, no. 2, pp. 181–191.CrossRefGoogle Scholar
  417. Ryan, J.F. and Pang, K., NISC Comparative Sequencing Program. The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa, EvoDevo, 2010, vol. 1, p. 9. doi 10.1186/2041-9139-1-9PubMedCentralPubMedCrossRefGoogle Scholar
  418. Saltzman, M.R., Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans, Geology, 2005, vol. 33, no. 7, pp. 573–576.Google Scholar
  419. Sandberg, P.A., An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy, Nature, 1983, vol. 305, no. 5929, pp. 19–22.CrossRefGoogle Scholar
  420. Sansom, R.S., Gabbott, S.E., and Purnell, M.A., Decay of vertebrate characters in hagfish and lamprey (Cyclostomata) and the implications for the vertebrate fossil record, Proc. R. Soc. London, Ser. B, 2011, vol. 278, no. 1709, pp. 1150–1157.CrossRefGoogle Scholar
  421. Saran, S., Meima, M.E., Alvarez-Curto, E., et al., cAMP signaling in Dictyostelium. Complexity of cAMP synthesis, degradation and detection, J. Muscle Res. Cell., 2002, vol. 23, nos. 7–8, pp. 793–802.CrossRefGoogle Scholar
  422. Savarese, M., Functional analysis of archaeocyathan skeletal morphology and its paleobiological implications, Paleobiology, 1992, vol. 18, no. 4, pp. 464–480.Google Scholar
  423. Schaap, P., Evolution of size and pattern in the social amoebas, BioEssays, 2007, vol. 29, no. 7, pp. 635–644.PubMedCentralPubMedCrossRefGoogle Scholar
  424. Scheltema, A.H. and Ivanov, D.L., An aplacophoran postlarva with iterated dorsal groups of spicules and skeletal similarities to Paleozoic fossils, invertebr. Biol., 2002, vol. 121, no. 1, pp. 1–19.CrossRefGoogle Scholar
  425. Schierwater, B. and DeSalle, R., Current problems with the zootype and the early evolution of the Hox genes, J. Exp. Zool., 2001, vol. 291, no. 2, pp. 169–174.PubMedCrossRefGoogle Scholar
  426. Schierwater, B., Eitel, M., Jakob, W., et al., Concatenated molecular and morphological analysis sheds light on early metazoan evolution and fuels a modern “Urmetazoon” hypothesis, PLoS Biol., 2009. vol. 7, no. 1, p. e1000020. doi 10.1371/journal.pbio.1000020PubMedCentralCrossRefGoogle Scholar
  427. Schmidt-Rhaesa, A., Perplexities concerning the Ecdysozoa: a reply to Pilato et al., Zool. Anz., 2006, vol. 244, nos. 3–4, pp. 205–208.Google Scholar
  428. Schmidt-Rhaesa, A., Bartolomaeus, T., Lemburg, C., et al., The position of the Arthropoda in the phylogenetic system, J. Morphol., 1998, vol. 238, no. 3, pp. 263–285.CrossRefGoogle Scholar
  429. Schmidt-Rhaesa, A. and Rothe, B.H., Postembryonic development of dorsoventral and longitudinal musculature in Pycnophyes kielensis (Kinorhyncha, Homalorhagida), integr. Comp. Biol., 2006, vol. 46, no. 2, pp. 144–150.PubMedCrossRefGoogle Scholar
  430. Schoenemann, B., Liu, J.-N., Shu, D.-G., et al., A miniscule optimized visual system in the Lower Cambrian, Lethaia, 2009, vol. 42, no. 3, pp. 265–273.CrossRefGoogle Scholar
  431. Schulz, H.N. and Schulz, H.D., Large sulfur bacteria and the formation of phosphorite, Science, 2005, vol. 307, no. 5708, pp. 416–418.PubMedCrossRefGoogle Scholar
  432. Schulze, J. and Schierenberg, E., Cellular pattern formation, establishment of polarity and segregation of colored cytoplasm in embryos of the nematode Romanomermis culicivorax, Dev. Biol., 2008, vol. 315, no. 2, pp. 426–436.PubMedCrossRefGoogle Scholar
  433. Sebé-Pedrós, A., Irimia, M., del Campo, J., et al., Regulated aggregative multicellularity in a close unicellular relative of Metazoa, eLife, 2013. vol. 2, no. e01287. doi 10.7554/eLife.01287PubMedCentralPubMedCrossRefGoogle Scholar
  434. Sebé-Pedrós, A., Roger, A.J., Lang, F.B., et al., Ancient origin of integrin-mediated adhesion and signaling machinery, Proc. Natl. Acad. Sci. U.S.A., 2010. vol. 107, no. 22, pp. 10142–10147.PubMedCentralPubMedCrossRefGoogle Scholar
  435. Seilacher, A., Vendozoa: organismic constructions in the Proterozoic biosphere, Lethaia, 1989, vol. 22, no. 3, pp. 229–239.CrossRefGoogle Scholar
  436. Seilacher, A., Vendobionta and Psammocorallia: lost constructions of the Precambrian evolution, J. Geol. Soc. Lond., 1992, vol. 149, no. 4, pp. 607–613.CrossRefGoogle Scholar
  437. Seilacher, A. and Pflüger, F., From biomats to benthic agriculture: a biohistoric revolution, in Biostabilization of Sediments, Krumbein, W.E., Paterson, D.M., and Stal, L.J., Eds., Oldenburg: BIS, 1994, pp. 97–105.Google Scholar
  438. Serezhnikova, E.A., Vendian Hiemalora from Arctic Siberia reinterpreted as holdfasts of benthic organisms, in The Rise and Fall of the Ediacaran Biota, Geol. Soc. Lond. Spec. Publ., Vickers-Rich, P. and Komarower, P., Eds., London: Geol. Soc., 2007., vol. 286, pp. 319–324.Google Scholar
  439. Serezhnikova, E.A., Palaeophragmodictya spinosa sp. nov., a bilateral benthic organism from the Vendian of the southeastern white sea region, Paleontol. J., 2007., vol. 41, no. 4, pp. 360–369.CrossRefGoogle Scholar
  440. Serezhnikova, E.A., Attachments of Vendian fossils: preservation, morphology, morphotypes, and possible morphogenesis, Paleontol. J., 2013, vol. 47, no. 3, pp. 231–243.CrossRefGoogle Scholar
  441. Shigeno, S., Sasaki, T., Moritaki, T., et al., Evolution of the cephalopod head complex by assembly of multiple molluscan body parts: Evidence from Nautilus embryonic development, J. Morphol., 2008, vol. 269, no. 1, pp. 1–17.PubMedCrossRefGoogle Scholar
  442. Shields-Zhou, G. and Zhu, M., Biogeochemical changes across the Ediacaran–Cambrian transition in South China, Precambrian Res., 2013, vol. 225, pp. 1–6.CrossRefGoogle Scholar
  443. Shu, D., A paleontological perspective of vertebrate origin, Chin. Sci. Bull., 2003, vol. 48, no. 8, pp. 725–735.CrossRefGoogle Scholar
  444. Shu, D.-G., Chen, L., Han, J., and Zhang, X.-L., An early Cambrian tunicate from China, Nature, 2001, vol. 411, no. 6836, pp. 472–473.PubMedCrossRefGoogle Scholar
  445. Shu, D. and Conway Morris, S., Response to comment “A new species of Yunnanozoan [sic!] with implications for deuterostome evolution,” Science, 2003, vol. 300, no. 5624, p. 1372.CrossRefGoogle Scholar
  446. Shu, D.-G., Conway Morris, S., Han, J., et al., Head and backbone of the early Cambrian vertebrate Haikouichthys, Nature, 2003., vol. 421, no. 6922, pp. 526–529.PubMedCrossRefGoogle Scholar
  447. Shu, D.-G., Conway Morris, S., and Zhang, X.-L., A Pikaia-like chordate from the Lower Cambrian of China, Nature, 1996, vol. 384, no. 6605, pp. 157–158.CrossRefGoogle Scholar
  448. Shu, D., Conway Morris, S., Zhang, Z.F., et al., A new species of Yunnanozoan [sic!] with implications for deuterostome evolution, Science, 2003., vol. 299, no. 5611, pp. 1380–1384.PubMedCrossRefGoogle Scholar
  449. Shu, D.-G., ConwayMorris, S., Zhang, Z.-F., and Han, J., The earliest history of the deuterostomes: the importance of the Chengjiang fossil-Lagerstatte, Proc. R. Soc. London, Ser. B, 2010, vol. 277, no. 1678, pp. 165–174.CrossRefGoogle Scholar
  450. Shu, D.-G., Luo, H.-L., Conway Morris, S., et al., Lower Cambrian vertebrates from south China, Nature, 1999, vol. 402, no. 6757, pp. 42–46.CrossRefGoogle Scholar
  451. Shubin, N., Tabin, C., and Carroll, S., Fossils, genes and the evolution of animal limbs, Nature, 1997, vol. 388, no. 6643, pp. 639–648.PubMedCrossRefGoogle Scholar
  452. Signor, P.W. and Vermeij, G.J., The plankton and the benthos: origins and early history of an evolving relationships, Paleobiology, 1994, vol. 20, no. 3, pp. 297–319.Google Scholar
  453. Sigwart, J.D. and Sutton, M.D., Deep molluscan phylogeny: synthesis of palaeontological and neontological data, Proc. R. Soc. London, Ser. B, 2007, vol. 274, no. 1624, pp. 2413–2419.CrossRefGoogle Scholar
  454. Singer, A., Plotnick, R., and Laflamme, M., Experimental fluid mechanics of an Ediacaran frond, Palaeontology, 2013. vol. 15, no. 2(19A).Google Scholar
  455. Skovsted, C.B., Balthasar, U., Brock, G.A., et al., The tommotiid Camenella reticulosa from the early Cambrian of South Australia: morphology, scleritome reconstruction, and phylogeny, Acta Palaeontol. Pol., 2009., vol. 54, no. 3, pp. 525–540.CrossRefGoogle Scholar
  456. Skovsted, C.B., Brock, G.A., Holmer, L.E., and Paterson, J.R., First report of the early Cambrian stem group brachiopod Mickwitzia from East Gondwana, Gondwana Res., 2009., vol. 16, no. 1, pp. 145–150.CrossRefGoogle Scholar
  457. Skovsted, C.B., Brock, G.A., Topper, T.P., et al., Scleritome construction, biofacies, biostratigraphy and systematics of the tommotiid Eccentrotheca helenia sp. nov. from the early Cambrian of South Australia, Palaeontology, 2011, vol. 54, no. 2, pp. 253–286.CrossRefGoogle Scholar
  458. Skovsted, C.B., Holmer, L.E., Larsson, C.M., et al., The scleritome of Paterimitra: an early Cambrian stem group brachiopod from South Australia, Proc. R. Soc. Lond. B, 2009., vol. 276, no. 1662, pp. 1651–1656.CrossRefGoogle Scholar
  459. Sly, B.J., Snoke, M.S., and Raff, R.A., Who came first— larvae or adults? Origins of bilaterian metazoan larvae, int. J. Dev. Biol., 2003. vol. 47, nos. 7/8, pp. 623–632.PubMedGoogle Scholar
  460. Smith, A.B., Cambrian problematica and the diversification of deuterostomes, BMC Biol., 2012, vol. 10, p. 79. doi 10.1186/1741-7007-10-79PubMedCentralPubMedCrossRefGoogle Scholar
  461. Smith, A.B., Zamora, S., and Alvaro, J.J., The oldest echinoderm faunas from Gondwana show that echinoderm body plan diversification was rapid, Nat. Commun., 2013, vol. 4, p. 1385. doi 10.1038/ncomms2391PubMedCrossRefGoogle Scholar
  462. Smith, M.R., Mouthparts of the Burgess Shale fossils Odontogriphus and Wiwaxia: implications for the ancestral molluscan radula, Proc. Biol. Sci., 2012, vol. 279, no. 1745, pp. 4285–4295.Google Scholar
  463. Smith, M.R., Nectocaridid ecology, diversity, and affinity: early origin of a cephalopod-like body plan, Paleobiology, 2013, vol. 39, no. 2, pp. 297–321.CrossRefGoogle Scholar
  464. Smith, M.R. and Caron, J.-B., Primitive soft-bodied cephalopods from the Cambrian, Nature, 2010, vol. 465, no. 7297, pp. 469–472.PubMedCrossRefGoogle Scholar
  465. Smith, S.A., Wilson, N.G., Goetz, F.E., et al., Resolving the evolutionary relationships of mollusks with phylogenomic tools, Nature, 2011, vol. 480, no. 7377, pp. 364–367.PubMedCrossRefGoogle Scholar
  466. Sperling, E.A., Pisani, D., and Peterson, K.J., Poriferan paraphyly and its implications for Precambrian palaeobiology, in The Rise and Fall of the Ediacaran Biota, Geol. Soc. Lond. Spec. Publ., Vickers-Rich, P. and Komarower, P., Eds., London: Geol. Soc., 2007, vol. 286, pp. 355–368.CrossRefGoogle Scholar
  467. Sperling, E.A., Robinson, J.M., Pisani, D., and Peterson, K.J., Where’s the glass? Biomarkers, molecular clocks, and microRNAs suggest a 200-Myr missing Precambrian record of siliceous sponge spicules, Geobiology, 2010, vol. 8, no. 1, pp. 24–36.PubMedCrossRefGoogle Scholar
  468. Sperling, E.A. and Vinther, J., A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes, Evol. Dev., 2010, vol. 12, no. 2, pp. 201–209.PubMedCrossRefGoogle Scholar
  469. Srivastava, M., Begovic, E., Chapman, J., et al., The Trichoplax genome and the nature of placozoans, Nature, 2008, vol. 454, no. 7207, pp. 955–960.PubMedCrossRefGoogle Scholar
  470. Stanley, S.M. and Hardie, L.A., Hypercalcification: paleontology links plate tectonics and geochemistry to sedimentology, GSA Today, 1999, vol. 9, no. 2, pp. 1–7.Google Scholar
  471. Stein, M., Waloszek, D., Maas, A., et al., The stem crustacean Oelandocaris oelandica re-visited, Acta Palaeontol. Pol., 2008, vol. 53, no. 3, pp. 461–484.CrossRefGoogle Scholar
  472. Steiner, M., Qian, Y., Li, G., et al., The developmental cycles of early Cambrian Olivooidae fam. nov. (Cycloneuralia) from the Yangtze Platform (China), Palaeogeogr., Palaeoclimatol., Palaeoecol., 2014, vol. 398, pp. 97–124.CrossRefGoogle Scholar
  473. Sternfeld, J. and O’Mara, R., Aerial migration of the Dictyostelium slug, Dev. Growth Diff., 2005, vol. 47, no. 1, pp. 49–58.CrossRefGoogle Scholar
  474. Störch, V., Higgins, R.P., and Morse, P., Ultrastructure of the body wall of Meiopriapulus fijiensis (Priapulida), Trans. Am. Microsc. Soc., 1989, vol. 108, no. 4, pp. 319–331.CrossRefGoogle Scholar
  475. Strausfeld, N.J., Strausfeld, C.M., Stowe, S., et al., The organization and evolutionary implications of neuropils and their neurons in the brain of the onychophoran Euperipatoides rovelli, Arthropod Struct. Dev., 2006, vol. 35, no. 3, pp. 169–196.PubMedCrossRefGoogle Scholar
  476. Struck, T.H., The impact of paralogy on phylogenetic studies—a case study on annelid relationships, PLoS One, 2013. vol. 8, no. 5, p. e62892. doi 10.1371/journal.pone.0062892PubMedCentralPubMedCrossRefGoogle Scholar
  477. Struck, T.H. and Fisse, F., Phylogenetic position of Nemertea derived from phylogenomic data, Mol. Biol. Evol., 2008, vol. 25, no. 4, pp. 728–736.PubMedCrossRefGoogle Scholar
  478. Struck, T.H., Paul, C., Hill, N., et al., Phylogenomic analyses unravel annelid evolution, Nature, 2011, vol. 471, no. 7336, pp. 95–100.PubMedCrossRefGoogle Scholar
  479. Suga, S.A., Chen, Z., de Mendoza, A., et al., The Capsaspora genome reveals a complex unicellular prehistory of animals, Nat. Commun., 2013, vol. 4, p. 2325. doi 10.1038/ncomms3325PubMedCentralPubMedCrossRefGoogle Scholar
  480. Suga, S.A. and Ruiz-Trillo, I., Development of ichthyosporean shed light on the origin of metazoan mulicellularity, Dev. Biol., 2013, vol. 377, no. 1, pp. 284–292.PubMedCentralPubMedCrossRefGoogle Scholar
  481. Summons, R.E., Bradley, A.S., Jahnke, L.L., and Waldbauer, J.R., Steroids, tripenoids, and molecular oxygen, Philos. Trans. R. Soc., B, 2006, vol. 361, no. 1471, pp. 951–968.CrossRefGoogle Scholar
  482. Sutton, M.D., Briggs, D.E.G., Siveter, D.J., and Siveter, D.J., An exceptionally preserved vermiform mollusk from the Silurian of England, Nature, 2001, vol. 410, no. 6827, pp. 461–463.PubMedCrossRefGoogle Scholar
  483. Sutton, M.D., Briggs, D.E.G., Siveter, D.J., et al., A Silurian armored aplacophoran and implications for molluscan phylogeny, Nature, 2012, vol. 490, no. 7418, pp. 94–97.PubMedCrossRefGoogle Scholar
  484. Swalla, B.J. and Smith, A.B., Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives, Philos. Trans. R. Soc., B, 2008, vol. 363, no. 1496, pp. 1557–1568.CrossRefGoogle Scholar
  485. Sysoev, V.A., Systematics and systematic position of Hyolitha, in Osnovnye problemy sistematiki zhivotnykh (General Problems of Systematics of Animals), Shimanskii, V.N., Ed., Moscow: Paleontol. Inst., Akad. Nauk SSSR, 1976, pp. 28–34.Google Scholar
  486. Szaniawski, H., New evidence for the protoconodont origin of chaetognaths, Acta Palaeontol. Pol., 2002, vol. 47, no. 3, pp. 405–419.Google Scholar
  487. Tanaka, G., Hou, X., Ma, X., et al., Chelicerate neural ground pattern in a Cambrian great appendage arthropod, Nature, 2013, vol. 502, no. 7471, pp. 364–367.PubMedCrossRefGoogle Scholar
  488. Telford, M.J. and Copley, R.R., Improving animal phylogenetics with genomic data, Trends Genet., 2011, vol. 27, no. 5, pp. 186–195.PubMedCrossRefGoogle Scholar
  489. Temereva, E.N. and Malakhov, V.V., Trimeric coelom organization in the larvae of Phoronopsis harmeri Pixell, 1912.(Phoronida, Lophophorata), Dokl. Biol. Sci., 2006, vol. 410, no. 1, pp. 396–399.PubMedCrossRefGoogle Scholar
  490. Topper, T.P., Holmer, L.E., Skovsted, C.B., et al., The oldest brachiopods from the lower Cambrian of South Australia, Acta Palaeontol. Pol., 2013., vol. 58, no. 1, pp. 93–109.Google Scholar
  491. Topper, T.P., Skovsted, C.B., Peel, J.S., and Harper, D.A.T., Molting in the lobopodian Onychodictyon from the lower Cambrian of Greenland, Lethaia, 2013., vol. 46, no. 4, pp. 490–495.Google Scholar
  492. Torruella, G., Derelle, R., and Paps, J., Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains, Mol. Biol. Evol., 2012, vol. 29, no. 2, pp. 531–544.PubMedCentralPubMedCrossRefGoogle Scholar
  493. Ungerer, P. and Scholtz, G., Cleavage and gastrulation in Pycnogonum litorale (Arthropoda, Pycnogonida): morphological support for the Ecdysozoa? Zoomorphology, 2009, vol. 128, no. 3, pp. 263–274.CrossRefGoogle Scholar
  494. Urbanek, A. and Mierzejewska, G., The fine structure of zooidal tubes in Sabelliditida and Pogonophora, in Upper Precambrian and Cambrian Palaeontology of the East-European Platform, Urbanek, A. and Rozanov, A.Yu., Eds., Warsaw: Wydawnictwa Geol., 1983, pp. 100–111.Google Scholar
  495. Ushatinskaya, G.T., Unusual Inarticulata from Lower Cambrian of Mongolia, Paleontol. Zh., 1987. no. 2, pp. 62–68.Google Scholar
  496. Ushatinskaya, G.T., “The teeth-bearing” inarticulate Brachiopods from the Middle Cambrian of Siberia and Kazakhstan, Paleontol. J., 1998, vol. 32, no. 5, pp. 474–478.Google Scholar
  497. Ushatinskaya, G.T. and Parkhaev, P.Yu., Preservation of imprints and casts of cells of the outer mantle epithelium in the shells of Cambrian brachiopods, mollusks, and problematics, Paleontol. J., 2005, vol. 39, no. 3, pp. 251–263.Google Scholar
  498. Vannier, J., Calandra, I., Gaillard, C., and yliska, A., Priapulid worms: Pioneer horizontal burrowers at the Precambrian-Cambrian boundary, Geology, 2010, vol. 38, no. 8, pp. 711–714.CrossRefGoogle Scholar
  499. Vannier, J., Steiner, M., Renvoise, E., et al., Early Cambrian origin of modern food webs: evidence from predator arrow worms, Proc. R. Soc. London, Ser. B, 2007, vol. 274, no. 1610, pp. 627–633.CrossRefGoogle Scholar
  500. Vanreusel, A., De Groote, A., Gollner, S., and Bright, M., Ecology and biogeography of free-living nematodes associated with chemosynthetic environments in the deep sea: a review, PLoS One, 2010, vol. 5, no. 8, p. 12449. doi 10.1371/journal.pone.0012449CrossRefGoogle Scholar
  501. Vendrasco, M.J., Porter, S.M., Kouchinsky, A., et al., New data on mollusks and their shell microstructures from the Middle Cambrian Gowers Formation, Australia, Paleontology, 2010, vol. 53, no. 1, pp. 97–135.CrossRefGoogle Scholar
  502. Vendrasco, M.J., Checa, A., Heimbrock, W.P., and Baumann, S.D.J., Nacre in mollusks from the Ordovician of the Midwestern United States, Geosciences, 2013, vol. 3, no. 1, pp. 1–29.CrossRefGoogle Scholar
  503. Vendrasco, M.J., Checa, A.G., and Kouchinsky, A.V., Shell microstructure of the early bivalve Pojetaia and the independent origin of nacre within the mollusks, Paleontology, 2011, vol. 54, no. 4, pp. 825–850.CrossRefGoogle Scholar
  504. Vermeij, G.J., The origin of skeletons, Palaios, 1990, vol. 4, no. 6, pp. 585–589.CrossRefGoogle Scholar
  505. Vinn, O., Possible cnidarian affinities of Torellella (Hyolithelminthes, Upper Cambrian, Estonia), Palaontol. Z., 2006, vol. 80, no. 4, pp. 384–389.CrossRefGoogle Scholar
  506. Vinn, O. and Mutvei, H., Calcareous tubeworms of the Phanerozoic, Est. J. Earth Sci., 2009, vol. 58, no. 4, pp. 286–296.CrossRefGoogle Scholar
  507. Vinn, O., ten Hove, H.A., and Mutvei, H., On the tube ultrastructure and origin of calcification in sabellids (Annelida, Polychaeta), Palaeontology, 2008, vol. 51, no. 2, pp. 295–301.CrossRefGoogle Scholar
  508. Vinn, O. and Zaton M. Inconsistences in proposed annelid affinities of early biomineralized organism Cloudina (Ediacaran): structural and ontogenic features, Carnets Geol., 2012. vol. 2012/03 (CG2012_A03), pp. 39–47.Google Scholar
  509. Vinther, J., The canal system in sclerites of Lower Cambrian Sinosachites (Halkieriidae: Sachitida): significance for the molluscan affinities of the sachitids, Palaeontology, 2009, vol. 52, no. 4, pp. 689–712.CrossRefGoogle Scholar
  510. Vinther, J. and Briggs, D.E.G., Machaeridian locomotion, Lethaia, 2009, vol. 42, no. 3, pp. 357–364.CrossRefGoogle Scholar
  511. Vinther, J. and Nielsen, C., The Early Cambrian Halkieria is a mollusk, Zool. Scr., 2005, vol. 34, no. 1, pp. 81–89.CrossRefGoogle Scholar
  512. Vinther, J., Smith, M.P., and Harper, D.A.T., Vetulicolians from the Lower Cambrian Sirius Passet Lagerstatte, North Greenland, and the polarity of morphological characters in basal deuterostomes, Palaeontology, 2011, vol. 54, no. 3, pp. 711–719.CrossRefGoogle Scholar
  513. Vinther, J., Sperling, E.A., Briggs, D.E.G., and Peterson, K.J., A molecular palaeobiological hypothesis for the origin of aplacophoran mollusks and their derivation from chiton-like ancestors, Proc. R. Soc. London, Ser. B, 2012, vol. 279, no. 1732, pp. 1259–1268.CrossRefGoogle Scholar
  514. Vinther, J., van Roy, P., and Briggs, D.E.G., Machaeridians are Paleozoic armored annelids, Nature, 2008, vol. 451, no. 7175, pp. 185–188.PubMedCrossRefGoogle Scholar
  515. Vogel, S., Life’s Devices, Princeton: Princeton Univ. Press, 1988.Google Scholar
  516. Vologodin, A.G. and Maslov, A.B., A new group of fossil organisms from the bottom Yudomian Formation of the Siberian Platform, Dokl. Akad. Nauk SSSR, 1960, vol. 134, no. 3, pp. 691–693.Google Scholar
  517. Wägele, J.-W. and Misoff, B., On quality of evidence in phylogeny reconstruction: a reply to Zrzavý’s defense of the ‘Ecdysozoa’ hypothesis, J. Zool. Syst. Evol. Res., 2001, vol. 39, no. 3, pp. 165–176.CrossRefGoogle Scholar
  518. Walcott, C.D., Cambrian geology and paleontology. II, no. 3, Middle Cambrian holothurians and medusae, Smithson. Miscell. Collect. Contrib., 1911., no. 2011, pp. 41–68.Google Scholar
  519. Walcott, C.D., Cambrian geology and paleontology. II, no. 5, Middle Cambrian annelids, Smithson. Miscell. Collect. Contrib., 1911., no. 2014, pp. 109–144.Google Scholar
  520. Walcott, C.D., Cambrian geology and paleontology. II, no. 6, Middle Cambrian Branchiopoda, Malacostraca, Trilobita, and Merostomata, Smithson. Miscell. Collect. Contrib., 1912. no. 2051, pp. 145–228.Google Scholar
  521. Wallberg, A., Thollesson, M.A., Farris, J.S., and Jondelius, U., The phylogenetic position of the comb jellies (Ctenophora) and the importance of taxonomic sampling, Cladistics, 2004, vol. 20, no. 6, pp. 558–578.CrossRefGoogle Scholar
  522. Wallraff, E. and Wallraff, H.G., Migrating and bidirectional phototaxis in Dictyostelium discoideum slugs lacking the action cross-linking 120 kDa gelation factor, J. Exp. Biol., 1997, vol. 200, no. 24, pp. 3213–3220.PubMedGoogle Scholar
  523. Waloszek, D. and Dunlop, J.A., A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian ‘Orsten’ of Sweden, and the phylogenetic position of pycnogonids, Palaeontology, 2002, vol. 45, no. 3, pp. 421–446.CrossRefGoogle Scholar
  524. Westheide, W., The direction of evolution within the Polychaeta, J. Nat. Hist., 1997, vol. 31, no. 1, pp. 1–5.CrossRefGoogle Scholar
  525. Whittington, H.B. and Briggs, D.E.G., The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia, Philos. Trans. R. Soc., B, 1985, vol. 309, no. 1141, pp. 569–609.CrossRefGoogle Scholar
  526. Whittington, P.M. and Mayer, G., The origins of the arthropod nervous system: insights from the Onychophora, Arthropod Struct. Dev., 2011, vol. 40, no. 3, pp. 193–209.CrossRefGoogle Scholar
  527. Wilkinson, B.H., Biomineralization, paleoceanography, and the evolution of calcareous marine organisms, Geology, 1979, vol. 7, no. 11, pp. 524–527.Google Scholar
  528. Williams, A., Carlson, S.J., Brunton, C.H.C., et al., A supraordinal classification of the Brachiopoda, Philos. Trans. R. Soc., B, 1996, vol. 351, no. 1344, pp. 1171–1193.CrossRefGoogle Scholar
  529. Williams, T., Blachuta, B., Hegna, T.A., and Nagy, L.M., Decoupling elongation and segmentation: notch involvement in anostracan crustacean segmentation, Evol. Dev., 2012, vol. 14, no. 4, pp. 372–382.PubMedCrossRefGoogle Scholar
  530. Wood, R.A., Grotzinger, J.P., and Dickson, J.A.D., Proterozoic modular biomineralized metazoan from the Nama Group, Namibia, Science, 2002, vol. 296, no. 5577, pp. 2383–2386.PubMedCrossRefGoogle Scholar
  531. Wood, R.A. and Zhuravlev, A.Yu., Escalation and ecological selectivity in the Cambrian radiation of skeletons, Earth-Sci. Rev., 2012, vol. 115, no. 4, pp. 249–261.CrossRefGoogle Scholar
  532. Wood, R.A., Zhuravlev, A.Yu., and Debrenne, F., Functional biology and ecology of Archaeocyatha, Palaios, 1992, vol. 7, no. 2, pp. 131–156.CrossRefGoogle Scholar
  533. Wu, W., Zhu, M., and Steiner, M., Composition and tiering of the Cambrian sponge communities, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2014, vol. 398, pp. 86–96.CrossRefGoogle Scholar
  534. Xiao, S.H., Zhang, Y., and Knoll, A.H., Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite, Nature, 1998, vol. 391, no. 6667, pp. 553–558.CrossRefGoogle Scholar
  535. Xiao, S., Shen, B., Zhou C., et al., A uniquely preserved Ediacaran fossil with direct evidence for a quilted body plan, Proc. Natl. Acad. Sci. U.S.A., 2005. vol. 102, no. 29, pp. 10227–10232.PubMedCentralPubMedCrossRefGoogle Scholar
  536. Yang, J., Ortega-Hernández, J., Butterfield, N.J., and Zhang, X.-G., Specialized appendages in fuxianhuiids and the head organization of early euarthropods, Nature, 2013, vol. 494, no. 7438, pp. 468–471.PubMedCrossRefGoogle Scholar
  537. Yin, Z., Liu, P., Li, G., et al., Biological and taphonomic implications of Ediacaran fossil embryos undergoing cytokinesis, Gondwana Res., 2014, vol. 25, no. 3, pp. 1019–1026.CrossRefGoogle Scholar
  538. Yin, L., Xiao, S., and Yuan, X., New observations on spicule-like structures from Doushantuo phosphorites at Weng’an, Guizhou Province, Chin. Sci. Bull., 2001, vol. 46, no. 21, pp. 1828–1832.CrossRefGoogle Scholar
  539. Yin, Z., Zhu, M., Tafforeau, P., et al., Early embryogenesis of potential bilaterian animals with polar lobe formation from the Ediacaran Weng’an Biota, South China, Precambrian Res., 2013, vol. 225, pp. 44–57.CrossRefGoogle Scholar
  540. Yochelson, E.L., Discussion of early Cambrian “mollusks,” J. Geol. Soc. Lond., 1975, vol. 131, no. 6, pp. 661–662.CrossRefGoogle Scholar
  541. Yochelson, E.L., An alternative approach to the interpretation of the phylogeny of ancient molluscs, Malacologia, 1978, vol. 17, no. 2, pp. 165–191.Google Scholar
  542. Yokobori, S.-I., Iseto, T., Asakawa, S., et al., Complete nucleotide sequences of mitochondrial genomes of two solitary entoprocts, Loxocorone allax and Loxosomella aloxiata: implications for lophotrochozoan phylogeny, Mol. Phylogenet. Evol., 2008, vol. 47, no. 2, pp. 612–628.PubMedCrossRefGoogle Scholar
  543. Young, G.A. and Hagadorn, J.W., The fossil record of cnidarian medusae, Palaeoworld, 2010, vol. 19, nos. 3–4, pp. 212–221.CrossRefGoogle Scholar
  544. Zakhvatkin, A.A., Sravnitel’naya embriologiya nizshikh vespozvonochnykh (Comparative Embryology of Lower Invertebrates), Moscow: Sov. Nauka, 1949.Google Scholar
  545. Zamora, S., Rahman, I.A., and Smith, A.B., Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution, PLoS One, 2012. vol. 7, no. 6, p. e38296. doi 10.1371/journal.pone.0038296PubMedCentralPubMedCrossRefGoogle Scholar
  546. Zamora, S. and Smith, A.B., Cambrian stalked echinoderms show unexpected plasticity of arm construction, Proc. R. Soc. London, Ser. B, 2012, vol. 279, no. 1727, pp. 293–298.CrossRefGoogle Scholar
  547. Zamora, S., Sumrall, C.D., and Vizcaïno, D., Morphology and ontogeny of the Cambrian edrioasteroid echinoderm Cambraster cannati from western Gondwana, Acta Palaeontol. Pol., 2013, vol. 58, no. 3, pp. 545–559.Google Scholar
  548. Zhang, X. and Briggs, D.E.G., The nature and significance of the appendages of Opabinia from the Middle Cambrian Burgess Shale, Lethaia, 2007, vol. 40, no. 2, pp. 161–173.CrossRefGoogle Scholar
  549. Zhang, Z., Han, J., Zhang, X., et al., Soft-tissue preservation in the Lower Cambrian linguloid brachiopod from South China, Acta Palaeontol. Pol., 2004, vol. 49, no. 2, pp. 259–266.Google Scholar
  550. Zhang, Z., Holmer, L.E., Ou, Q., et al., The exceptionally preserved Early Cambrian stem rhynchonelliform brachiopod Longtancunella and its implications, Lethaia, 2011, vol. 44, no. 4, pp. 490–495.CrossRefGoogle Scholar
  551. Zhang, Z., Holmer, L.E., Skovsted, C.B., et al., A scleritebearing stem group ectoproct from the early Cambrian and its implications, Sci. Rep., 2013, vol. 3, p. 1066. doi 10.1038/srep01066PubMedCentralPubMedGoogle Scholar
  552. Zhang, X.-G., Hou, X.-G., and Bergström, J., Early Cambrian priapulid worms buried with their lined burrows, Geol. Mag., 2006, vol. 143, no. 6, pp. 743–748.CrossRefGoogle Scholar
  553. Zhang, Z., Li, G., Emig, C.C., et al., Architecture and function of the lophophore in the problematic brachiopod Heliomedusa orienta (Early Cambrian, South China), Geobios, 2009, vol. 42, no. 5, pp. 649–661.CrossRefGoogle Scholar
  554. Zhang, X.-G. and Pratt, B.R., Early Cambrian palaeoscolecid cuticles from Shaanxi, China, J. Paleontol., 1996, vol. 70, no. 2, pp. 275–279.Google Scholar
  555. Zhao, F., Caron, J.-B., Bottjer, D.J., et al., Diversity and species abundance patterns of the early Cambrian (Series 2, Stage 3) Chengjiang biota from China, Paleobiology, 2013, vol. 40, no. 1, pp. 50–69.CrossRefGoogle Scholar
  556. Zhu, M., Gehling, J.G., Xiao, S., et al., Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia, Geology, 2008, vol. 36, no. 11, pp. 867–870.CrossRefGoogle Scholar
  557. Zhu, M.-Y., Iten van, H., Cox, R.S., et al., Occurrence of Byronia Matthew and Sphenothallus Hall in the Lower Cambrian of China, Palaontol. Z., 2000, vol. 74, no. 3, pp. 227–238.CrossRefGoogle Scholar
  558. Zhu, M.-Y., Zhao, Y.-L., and Chen, J.-Y., Revision of the Cambrian discoidal animals Stellosomites eumorphus and Pararotadiscus guizhouensis from South China, Geobios, 2002, vol. 35, no. 2, pp. 165–185.CrossRefGoogle Scholar
  559. Zhuravlev, A.Yu., Radiocyathids, in Problematic Fossil Taxa, Hoffman, A. and Nitecki, M.H., Eds., New York: Oxford Univ. Press, 1986, pp. 35–44.Google Scholar
  560. Zhuravlev, A.Yu., Poriferan aspects of archaeocyathan skeletal function, Mem. Assoc. Australas. Palaeontol., 1989, vol. 8, pp. 387–399.Google Scholar
  561. Zhuravlev, A.Yu., Were Ediacaran Vendobionta multicellulars? N. Jahr. Zentr. Geol. Palaontol., Abh., 1993., vol. 190, nos. 2/3, pp. 299–314.Google Scholar
  562. Zhuravlev, A.Yu., A functional morphological approach to the biology of the Archaeocyatha, N. Jahr. Zentr. Geol. Palaontol., Abh., 1993., vol. 190, nos. 2/3, pp. 315–327.Google Scholar
  563. Zhuravlev, A.Yu., A new coral from the Lower Cambrian of Siberia, Paleontol. J., 1999, vol. 33, no. 5, pp. 502–508.Google Scholar
  564. Zhuravlev, A.Yu., Paleoecology of Cambrian reef ecosystems, in The History and Sedimentology of Ancient Reef Systems, Topics Geobiol., Stanley, J.D. Jr., Ed., New York: Plenum, 2001., vol. 17, pp. 121–157.CrossRefGoogle Scholar
  565. Zhuravlev, A.Yu., Biota diversity and structure during the Neoproterozoic-Ordovician transition, in The Ecology of the Cambrian Radiation, Zhuravlev, A.Yu. and Riding, R., Eds., New York: Columbia Univ. Press, 2001., pp. 173–199.Google Scholar
  566. Zhuravlev, A.Yu., Specific diversity of organisms in Cambrian, in Ekosistemnye perestroika i evolyutsiya biosfery (Ecosystem Transformations and Evolution of Biosphere), Ponomarenko, A.G., Ed., Moscow: Paleontol. Inst., Ross. Akad. Nauk, 2001., no. 4, pp. 174–183.Google Scholar
  567. Zhuravlev, A.Yu., Debrenne, F., and Lafuste, J., Early Cambrian microstructural diversification of Cnidaria, Cour. Forsch. Senkenberg, 1993, vol. 164, pp. 365–372.Google Scholar
  568. Zhuravlev, A.Yu., Gámez Vintaned, J.A., and Ivantsov, A.Yu., First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin, Geol. Mag., 2009, vol. 146, no. 5, pp. 775–780.CrossRefGoogle Scholar
  569. Zhuravlev, A.Yu., Gámez Vintaned, J.A., and Ivantsov, A.Yu., Discussion of ‘First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin’: reply, Geol. Mag., 2011., vol. 148, no. 2, pp. 329–333.CrossRefGoogle Scholar
  570. Zhuravlev, A.Yu., Gámez Vintaned, J.A., and Liñán, E., The Palaeoscolecida and the evolution of the Ecdysozoa, Palaeontogr. Can., 2011., vol. 31, pp. 177–204.Google Scholar
  571. Zhuravlev, A.Yu., Liñán, E., Gámez Vintaned, J.A., et al., New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain, Acta Palaeontol. Pol., 2012, vol. 57, no. 1, pp. 205–224.CrossRefGoogle Scholar
  572. Zhuravlev, A.Yu. and Naimark, E.B., Alpha, beta, or gamma: numerical view on the Early Cambrian world, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2005, vol. 220, nos. 1–2, pp. 207–225.CrossRefGoogle Scholar
  573. Zhuravlev, A.Yu. and Wood, R.A., Eve of biomineralization: controls on skeletal mineralogy, Geology, 2008, vol. 36, no. 12, pp. 923–926.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Geological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations