Biology Bulletin Reviews

, Volume 3, Issue 4, pp 296–311 | Cite as

Biochemical methods of crude hydrocarbon desulfurization

  • N. V. Borzenkova
  • I. A. Veselova
  • T. N. Shekhovtsova
Article

Abstract

Up-to-date information on the microbiological method of fuel desulfurization has been systematized and the ways of increasing the efficiency of this method have been considered. The prospective uses of biochemical methods for the specific elimination of sulfur from petroleum and the production of fuel conforming to modern standards are discussed. Reports on the novel desulfurization procedure that employs commercial preparations of enzymes and proteins are analyzed in detail.

Keywords

fuel desulfurization biochemical methods enzymes hemoglobin microorganisms dibenzothiophene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anisimov, A.V. and Tarakanova, A.V., Oxidative desulfurization of hydrocarbon materials, Zh. Ross. Khim. O-va im. D.I. Mendeleeva, 2008, vol. 52, no. 4, pp. 32–40.Google Scholar
  2. Ansari, F., Prayuenyong, P., and Tothill, I., Biodesulfurization of dibenzothiophene by Shewanella putrefaciens NCIMB 8768, J. Biol. Phys. Chem., 2007, vol. 7, no. 1, pp. 75–78.CrossRefGoogle Scholar
  3. Ansari, F., Grigoriev, P., Libor, S., Tothill, I.E., and Ramsden, J.J., DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe3O4 nanoparticles, Biotechnol. Bioeng., 2009, vol. 102, no. 5, pp. 1505–1512.PubMedCrossRefGoogle Scholar
  4. Ayala, M., Robledo, N.R., Lopez-Munguia, A., and Vazquez-Duhalt, R., Substrate specificity and ionization potential in chloroperoxidase-catalyzed oxidation of diesel fuel, Environ. Sci. Technol., 2000, vol. 34, no. 13, pp. 2804–2809.CrossRefGoogle Scholar
  5. Babich, I.V. and Moulijn, J.A., Science and technology of novel processes for deep desulfurization of oil refinery streams: a review, Fuel, 2003, vol. 82, no. 6, pp. 607–631.CrossRefGoogle Scholar
  6. Barbusinski, K., Fenton reaction-controversy concerning the chemistry, Ecol. Chem. Eng. S., 2009, vol. 16, no. 3, pp. 347–358.Google Scholar
  7. Basurto, J.C., Aburto, J., Ferrara, J.T., and Torres, E., Ligand recognition by chloroperoxidase using molecular interaction fields and quantum chemistry calculations, Mol. Simul., 2007, vol. 33, no. 8, pp. 649–654.CrossRefGoogle Scholar
  8. Beskoski, V.P., Matic, V., Milic, J., Godevac, D., Mandic, B., and Vrvic, M.M., Oxidation of dibenzothiophene as a model substrate for the removal of organic sulfur from fossil fuels by iron(III) ions generated from pyrite by Acidithiobacillus ferrooxidans, J. Serb. Chem. Soc., 2007, vol. 72, no. 6, pp. 533–537.CrossRefGoogle Scholar
  9. Bhatia, S. and Sharma, D.K., Biodesulfurization of dibenzothiophene, its alkylated derivatives and crude oil by a newly isolated strain Pantoea agglomerans D23W3, Biochem. Eng. J., 2010, vol. 50, no. 3, pp. 104–109.CrossRefGoogle Scholar
  10. Borgne, S. and Quintero, R., Biotechnological processes for the refining of petroleum, Fuel Proc. Technol., 2003, vol. 81, no. 2, pp. 155–169.CrossRefGoogle Scholar
  11. Borzenkova, N.V., Conversion of dibenzothiophene in presence of heme-containing biocatalysts, in Materialy mezhd. molodezhnogo nauch. foruma “Lomonosov-2011” (Proc. Int. Youth Sci. Forum “Lomonosov2011”), Moscow: Maks-Press, 2011, p. 526. http://lomonosov-msu.ru/archive/Lomonosov2011/structure-32-13-47.htm Google Scholar
  12. Bressler, D.C., Fedorak, P.M., and Pickard, M.A., Oxidation of carbazole, N-ethylcarbazole, fluorene, and dibenzothiophene by the laccase of Coriolopsis gallica, Biotechnol. Lett., 2000, vol. 22, no. 14, pp. 1119–1125.CrossRefGoogle Scholar
  13. Calzada, J., Zamarro, M.T., Alcon, A., Santos, V.E., Diaz, E., Garcia, J.L., and Garcia-Ochoa, F., Analysis of dibenzothiophene desulfurization in a recombinant Pseudomonas putida strain, Appl. Environ. Microbiol., 2009, vol. 75, no. 3, pp. 875–877.PubMedCrossRefGoogle Scholar
  14. Calzada, J., Heras, S., Alcon, A., Santos, V.E., and Garcia-Ochoa, F., Biodesulfurization of dibenzothiophene (DBT) using Pseudomonas putida CECT 5279: a biocatalyst formulation comparison, Energy Fuels, 2009, vol. 23, no. 11, pp. 5491–5495.CrossRefGoogle Scholar
  15. Caro, A., Boltes, K., Leton, P., and Garcia-Calvo, E., Dibenzothiophene biodesulfurization in resting cell conditions by aerobic bacteria, Biochem. Eng. J., 2007, vol. 35, no. 2, pp. 191–197.CrossRefGoogle Scholar
  16. Caro, A., Leton, P., Garcia-Calvo, E., and Setti, L., Enhancement of dibenzothiophene biodesulfurization using β-cyclodextrines in oil-to-water media, Fuel, 2007, vol. 86, no. 16, pp. 2632–2636.CrossRefGoogle Scholar
  17. Caro, A., Boltes, K., Leton, P., and Garcia-Calvo, E., Biodesulfurization of dibenzothiophene by growing cells of Pseudomonas putida CECT 5279 in biphasic media, Chemosphere, 2008, vol. 73, no. 5, pp. 663–669.PubMedCrossRefGoogle Scholar
  18. Chang, J.H., Chang, Y.K., Ryu, H.W., and Chang, H.N., Desulfurization of light gas oil in immobilized-cell systems of Gordona sp. CYKS1 and Nocardia sp. CYKS2, FEMS Microbiol. Lett., 2000, vol. 182, no. 2, pp. 309–312.PubMedCrossRefGoogle Scholar
  19. Chen, H., Zhang, W.J., Chen, J.M., Cai, Y.B., and Li, W., Desulfurization of various organic sulfur compounds and the mixture of DBT + 4,6-DMDBT by Mycobacterium sp. ZD-19, Biores. Technol., 2008, vol. 99, no. 9, pp. 3630–3634.CrossRefGoogle Scholar
  20. Cho, S.J., Park, S.J., Lim, J.S., Rhee, Y.H., and Shin, K.S., Oxidation of polycyclic aromatic hydrocarbons by laccase of Coriolus hirsutus, Biotechnol. Lett., 2002, vol. 24, no. 16, pp. 1337–1340.CrossRefGoogle Scholar
  21. da Silva Madeira, L., Ferreira-Leitao, V.S., and da Silva Bon, E.P., Dibenzothiophene oxidation by horseradish peroxidase in organic media: effect of the DBT: H2O2 molar ratio and H2O2 addition mode, Chemosphere, 2008, vol. 71, no. 1, pp. 189–194.PubMedCrossRefGoogle Scholar
  22. Davoodi-Dehaghani, F., Vosoughi, M., and Ziaee, A.A., Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain, Biores. Technol., 2010, vol. 101, no. 3, pp. 1102–1105.CrossRefGoogle Scholar
  23. Debabov, V.G., Microbial desulfurization of motor fuel, Biotekhnologiya, 2009, no. 6, pp. 8–15.Google Scholar
  24. Dinamarca, M.A., Ibacache-Quiroga, C., Baeza, P., Galvez, S., Villarroel, M., Olivero, P., and Ojeda, J., Biodesulfurization of gas oil using inorganic supports biomodified with metabolically active cells immobilized by adsorption, Biores. Technol., 2010, vol. 101, no. 7, pp. 2375–2378.CrossRefGoogle Scholar
  25. Dordick, J.S., Ryu, K., and McEldoon, J.P., Enzymatic catalysis on coal-related compounds in organic media: kinetics and potential commercial applications, Res. Conserv. Recycl., 1991, vol. 5, nos. 2–3, pp. 195–209.CrossRefGoogle Scholar
  26. Eibes, G., Cajthaml, T., Moreira, M.T., Feijoo, G., and Lema, J.M., Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone, Chemosphere, 2006, vol. 64, no. 3, pp. 408–414.PubMedCrossRefGoogle Scholar
  27. Feng, J.H., Zeng, Y.Y., Ma, C.Q., Cai, X.F., Zhang, Q., Tong, M.Y., Yu, B., and Xu, P., The surfactant Tween-80 enhances biodesulfurization, Appl. Environ. Microbiol., 2006, vol. 72, no. 11, pp. 7390–7393.PubMedCrossRefGoogle Scholar
  28. Gogoi, B.K. and Bezbaruah, R.L., Microbial degradation of sulfur compounds present in coal and petroleum, Progr. Ind. Microbiol., 2002, vol. 36, pp. 427–456.CrossRefGoogle Scholar
  29. Gray, K.A., Pogrebinsky, O.S., Mrachko, G.T., Xi, L., Monticello, D.J., and Squires, C.H., Molecular mechanism of biocatalytic desulfurization of fossil fuels, Nat. Biotechnol., 1996, vol. 14, no. 13, pp. 1705–1709.PubMedCrossRefGoogle Scholar
  30. Gray, K.A., Mrachko, G.T., and Squires, C.H., Biodesulfurization of fossil fuels, Curr. Opin. Microbiol., 2003, vol. 6, no. 3, pp. 229–235.PubMedCrossRefGoogle Scholar
  31. Gunam, I.B.W., Yaku, Y., Hirano, M., Yamamura, K., Tomita, F., Sone, T., and Asano, K., Biodesulfurization of alkylated forms of dibenzothiophene and benzothiophene by Sphingomonas subarctica T7b, J. Biosci. Bioeng., 2006, vol. 101, no. 4, pp. 322–327.PubMedCrossRefGoogle Scholar
  32. Guobin, S., Jianmin, X., Chen, G., Huizhou, L., and Jiayong, C., Biodesulfurization using Pseudomonas delafieldii in magnetic polyvinyl alcohol beads, Lett. Appl. Microbiol., 2005, vol. 40, no. 1, pp. 30–36.PubMedCrossRefGoogle Scholar
  33. Guobin, S., Huaiying, Z., Weiquan, C., Jianmin, X., and Huizhou, L., Improvement of biodesulfurization rate by assembling nanosorbents on the surfaces of micro- bial cells, Biophys. J.: Biophys. Lett., 2005, vol. 89, no. 6, pp. L58–L60.CrossRefGoogle Scholar
  34. Guobin, S., Huaiying, Z., Jianmin, X., Guo, C., Wangliang, L., and Huizhou, L., Biodesulfurization of hydrodesulfurized diesel oil with Pseudomonas delafieldii R-8 from high density culture, Biochem. Eng. J., 2006, vol. 27, no. 3, pp. 305–309.CrossRefGoogle Scholar
  35. Gupta, N., Roychoudhury, P.K., and Deb, J.K., Biotechnology of desulfurization of diesel: prospects and challenges, Appl. Microbiol. Biotechnol., 2005, vol. 66, no. 4, pp. 356–366.PubMedCrossRefGoogle Scholar
  36. Hou, Y., Kong, Y., Yang, J., Zhang, J., Shi, D., and Xin, W., Biodesulfurization of dibenzothiophene by immobilized cells of Pseudomonas stutzeri UP-1, Fuel, 2005, vol. 84, nos. 14–15, pp. 1975–1979.CrossRefGoogle Scholar
  37. Ichinose, H., Wariishi, H., and Tanaka, H., Effective oxygen transfer reaction catalyzed by microperoxidase-11 during sulfur oxidation of dibenzothiophene, Enz. Microb. Technol., 2002, vol. 30, no. 3, pp. 334–339.CrossRefGoogle Scholar
  38. Izumi, Y. and Ohshiro, T., Purification and characterization of enzymes involved in desulfurization of dibezothiophene in fossil fuels, J. Mol. Catal. B: Enzym., 2001, vol. 11, no. 4–6, pp. 1061–1064.CrossRefGoogle Scholar
  39. Kamali, N., Tavallaie, M., Bambai, B., Karkhane, A.A., and Miri, M., Site-directed mutagenesis enhances the activity of NADH-FMN oxidoreductase (DszD) activity of Rhodococcus erythropolis, Biotechnol. Lett., 2010, vol. 32, no. 7, pp. 921–927.PubMedCrossRefGoogle Scholar
  40. Kayser, K.J., Bielaga-Jones, B.A., Jackowski, K., Odusan, O., and Kilbane, J.J. II, Utilization of organosulphur compounds by axenic and mixed cultures of Rhodococcus rhodochrous IGTS8, J. Gen. Microbiol., 1993, vol. 139, no. 12, pp. 3123–3129.CrossRefGoogle Scholar
  41. Kharlampidi, Kh.E., Sulfur-organic compounds of oil, purification and modification methods, Soros. Obraz. Zh., 2000, vol. 6, no. 7, pp. 42–46.Google Scholar
  42. Kilbane, J.J. II, Microbial biocatalyst developments to upgrade fossil fuels, Curr. Opin. Biotechnol., 2006, vol. 17, no. 3, pp. 305–314.PubMedCrossRefGoogle Scholar
  43. Klyachko, N.L. and Klibanov, A.M., Oxidation of dibenzothiophene catalyzed by hemoglobin and other hemoproteins in various aqueous-organic media, Appl. Biochem. Biotechnol., 1992, vol. 37, no. 1, pp. 53–68.CrossRefGoogle Scholar
  44. Kobayashi, M., Onaka, T., Ishii, Y., Konishi, J., Takaki, M., Okada, H., Ohta, Y., Koizumi, K., and Suzuki, M., Desulfurization of alkylated forms of both dibenzothiophene and benzothiophene by a single bacterial strain, FEMS Microbiol. Lett., 2000, vol. 187, no. 2, pp. 123–126.PubMedCrossRefGoogle Scholar
  45. Konishi, M., Kishimoto, M., Omasa, T., Katakura, Y., Shioya, S., and Ohtake, H., Effect of sulfur sources on specific desulfurization activity of Rhodococcus erythropolis KA2-5-1 in exponential fed-batch culture, J. Biosci. Bioeng., 2005, vol. 99, no. 3, pp. 259–263.PubMedCrossRefGoogle Scholar
  46. Labana, S., Pandey, G., and Jain, R.K., Desulphurization of dibenzothiophene and diesel oils by bacteria, Lett. Appl. Microbiol., 2005, vol. 40, no. 3, pp. 159–163.PubMedCrossRefGoogle Scholar
  47. Lee, M.Y. and Dordick, J.S., Enzyme activation for non-aqueous media, Curr. Opin. Biotechnol., 2002, vol. 13, no. 4, pp. 376–384.PubMedCrossRefGoogle Scholar
  48. Li, F., Xu, P., Feng, J., Meng, L., Zheng, Y., Luo, L., and Ma, C., Microbial desulfurization of gasoline in a Mycobacterium goodii X7B immobilized-cell system, Appl. Environ. Microbiol., 2005, vol. 71, no. 1, pp. 276–281.PubMedCrossRefGoogle Scholar
  49. Li, F., Zhang, Z., Feng, J., Cai, X., and Xu, P., Biodesulfurization of DBT in tetradecane and crude oil by a facultative thermophilic bacterium Mycobacterium goodii X7B, J. Biotechnol., 2007, vol. 127, no. 2, pp. 222–228.PubMedCrossRefGoogle Scholar
  50. Li, G.Q., Li, S.S., Qu, S.W., Liu, Q.K., Ma, T., Zhu, L., Liang, F.L., and Liu, R.L., Improved biodesulfurization of hydrodesulfurized diesel oil using Rhodococcus erythropolis and Gordonia sp., Biotechnol. Lett., 2008, vol. 30, no. 10, pp. 1759–1764.PubMedCrossRefGoogle Scholar
  51. Li, G.Q., Li, S.S., Zhang, M.L., Wang, J., Zhu, L., Liang, F.L., Liu, R.L., and Ma, T., Genetic rearrangement strategy for optimizing the dibenzothiophene biodesulfurization pathway in Rhodococcus erythropolis, Appl. Environ. Microbiol., 2008, vol. 74, no. 4, pp. 971–976.PubMedCrossRefGoogle Scholar
  52. Li, Y.G., Xing, J.M., Xiong, X.C., Li, W.L., Gao, H.S., and Liu, H.Z., Improvement of biodesulfurization activity of alginate immobilized cells in biphasic systems, J. Ind. Microbiol. Biotechnol., 2008, vol. 35, no. 3, pp. 145–150.PubMedCrossRefGoogle Scholar
  53. Li, Y.G., Gao, H.S., Li, W.L., Xing, J.M., and Liu, H.Z., In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria, Biores. Technol., 2009, vol. 100, no. 21, pp. 5092–5096.CrossRefGoogle Scholar
  54. Ma, C.Q., Feng, J.H., Zeng, Y.Y., Cai, X.F., Sun, B.P., Zhang, Z.B., Blankespoor, H.D., and Xu, P., Methods for the preparation of a biodesulfurization biocatalyst using Rhodococcus sp., Chemosphere, 2006, vol. 65, no. 1, pp. 165–169.PubMedCrossRefGoogle Scholar
  55. McFarland, B.L., Biodesulfurization, Curr. Opin. Biotechnol., 1999, vol. 2, no. 3, pp. 257–264.Google Scholar
  56. Meesala, L., Balomajumder, C. Chatterjee, S. and Roy, P., Biodesulfurization of dibenzothiophene using recombinant Pseudomonas strain, J. Chem. Technol. Biotechnol., 2008, no. 3, vol. 83, pp. 294–298.CrossRefGoogle Scholar
  57. Mohebali, G., Ball, A.S., Rasekh, B., and Kaytash, A., Biodesulfurization potential of a newly isolated bacterium, Gordonia alkanivorans RIPI90A, Enz. Microb. Technol., 2007, vol. 40, no. 4, pp. 578–584.CrossRefGoogle Scholar
  58. Mohebali, G. and Ball, A.S., Biocatalytic desulfurization (BDS) of petro diesel fuels, Microbiol., 2008, vol. 154, pp. 2169–2183.CrossRefGoogle Scholar
  59. Monticello, D.J., Biodesulfurization and the upgrading of petroleum distillates, Cur. Opin. Biotechnol., 2000, vol. 11, no. 6, pp. 540–546.CrossRefGoogle Scholar
  60. Niu, J. and Yu, G., Molecular structural characteristics governing biocatalytic oxidation of PAHs with hemoglobin, Environ. Toxicol. Pharmacol., 2004, vol. 18, no. 1, pp. 39–45.PubMedCrossRefGoogle Scholar
  61. Naito, M., Kawamoto, T., Fujino, K., Kobayashi, M., Maruhashi, M., and Tanaka, M., Long-term repeated biodesulfurization by immobilized Rhodococcus erythropolis KA2-5-1 cells, Appl. Microbiol. Biotechnol., 2001, vol. 55, no. 3, pp. 374–378.PubMedCrossRefGoogle Scholar
  62. Oda, S. and Ohta, H., Biodesulfurization of dibenzothiophene with Rhodococcus erythropolis ATCC 53968 and its mutant in an interface bioreactor, J. Biosci. Bioeng., 2002, vol. 94, no. 5, pp. 474–477.PubMedGoogle Scholar
  63. Ohshiro, T., Kojima, T., Torii, K., Kawasoe, H., and Izumi, Y., Purification and characterization of dibenzothiophene (DBT) sulfone monooxygenase, an enzyme involved in dbt desulfurization, from Rhodococcus erythropolis D-l, J. Biosci. Bioeng., 1999, vol. 88, no. 6, pp. 610–616.PubMedCrossRefGoogle Scholar
  64. Ohshiro, T., Aoi, Y., Torii, K., and Izumi, Y., Flavin reductase coupling with two monooxygenases involved in dibenzothiophene desulfurization: purification and characterization from a non-desulfurizing bacterium, Paenibacillus polymyxa A-1, Appl. Microbiol. Biotechnol., 2002, vol. 59, no. 6, pp. 649–657.PubMedCrossRefGoogle Scholar
  65. Ortiz-Leon, M., Velasco, L., and Vazquez-Duhalt, R., Biocatalytic oxidation of polycyclic aromatic hydrocarbons by hemoglobin and hydrogen peroxide, Biochem. Biophys. Res. Commun., 1995, vol. 215, no. 3, pp. 968–973.PubMedCrossRefGoogle Scholar
  66. Peng, Y. and Wen, J., Modeling of DBT biodesulfurization by resting cells of Gordonia sp.WQ-01A immobilized in alginate gel beads in an oil-water-immobilization system, Chem. Biochem. Eng. Q., 2010, vol. 24, no. 1, pp. 85–94.Google Scholar
  67. Pickard, M.A., Roman, R., Tinoco, R., and Vazquez-Duhalt, R., Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase, Appl. Environ. Microbiol., 1999, vol. 65, no. 9, pp. 3805–3809.PubMedGoogle Scholar
  68. Qian, E., Development of novel nonhydrogenation desulfurization process-oxidative desulfurization of distillate, J. Jpn. Petrol. Inst., 2008, vol. 51, no. 1, pp. 14–31.CrossRefGoogle Scholar
  69. Raheb, J., Naghdi, S.H., Karkhane, A.A., Yakhchali, B., and Flint, K., Designing a new recombinant strain with additional copy number of dsz cluster to enhance biodesulfurization activity in Pseudomonas aeruginosa ATCC 9027, Iran. J. Sci. Technol. Trans. A, 2005, vol. 29, no. 1, pp. 195–199.Google Scholar
  70. Raheb, J., Hajipour, M.J., Saadati, M., Rasekh, B., and Memari, B., The enhancement of biodesulfurization activity in a novel indigenous engineered Pseudomonas putida, Iran. Biomed. J., 2009, vol. 13, no. 4, pp. 207–213.PubMedGoogle Scholar
  71. Raheb, J., Hajipour, M.J., and Memari, B., Increasing of biodesulfurization activity of newly recombinant Pseudomonas aeruginosa ATCC 9027 by cloning the flavin reductase gene, Int. J. Biotechnol. Biochem., 2010, vol. 6, no. 2, pp. 219–229.Google Scholar
  72. Ryu, K., Heo, J., and Yoo, I.K., Removal of dibenzothiophene and its oxidized product in anhydrous water-immiscible organic solvents by immobilized cytochrom c, Biotechnol. Lett., 2002, vol. 24, no. 2, pp. 143–146.CrossRefGoogle Scholar
  73. Ryu, K., Kim, J., Heo, J., and Chae, Y., Oxidation of dibenzothiophene catalyzed by immobilized hemoproteins in water-immiscible organic solvents, Biotechnol. Lett., 2002, vol. 24, no. 19, pp. 1535–1538.CrossRefGoogle Scholar
  74. Shan, G.B., Xing, J.M., Zhang, H.Y., and Liu, H.Z., Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles, Appl. Environ. Microbiol., 2005, vol. 71, no. 8, pp. 4497–4502.PubMedCrossRefGoogle Scholar
  75. Sharipov, A.Kh. and Nigmatullin, V.R., Oxidative desulfurization of diesel fuel, Neftekhimiya, 2005, no. 6, vol. 45, pp. 403–410.Google Scholar
  76. Shavandi, M., Sadeghizadeh, M., Zomorodipour, A., and Khajeh, K., Biodesulfurization of dibenzothiophene by recombinant Gordonia alkanivorans RIPI90A, Biores. Technol., 2009, vol. 100, no. 1, pp. 475–479.CrossRefGoogle Scholar
  77. Soleimani, M., Bassi, A., and Margaritis, A., Biodesulfurization of refractory organic sulfur compounds in fossil fuels, Biotechnol. Adv., 2007, vol. 25, no. 6, pp. 570–596.PubMedCrossRefGoogle Scholar
  78. Song, C. and Ma, X., New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization, Appl. Catal., B., 2003, vol. 41, nos. 1–2, pp. 207–238.Google Scholar
  79. Stachyra, T., Guillochon, D., Pulvin, S., and Thomas, D., Hemoglobin, horseradish peroxidase, and hemebovine serum albumin as biocatalyst for the oxidation of dibenzothiophene, Appl. Biochem. Biotechnol., 1996, vol. 59, no. 3, pp. 231–243.PubMedCrossRefGoogle Scholar
  80. Stanescu, M.A., Ginosar, D.M., Bala, G.A., and Anderson, R.P., Biocatalytic treatment of organosulfur compounds in emulsions in supercritical fluids, Fuel Chem. Div. Prepr., 2002, vol. 47, no. 2, pp. 524–526.Google Scholar
  81. Stanislaus, A., Marafi, A., and Rana, M.S., Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production, Catal. Today, 2010, vol. 153, nos. 1–2, pp. 1–68.CrossRefGoogle Scholar
  82. Tanaka, Y., Matsui, T., Konishi, J., Maruhashi, K., and Kurane, R., Biodesulfurization of benzothiophene and dibenzothiophene by a newly isolated Rhodococcus strain, Appl. Microbiol. Biotechnol., 2002, vol. 59, nos. 2–3, pp. 325–328.PubMedGoogle Scholar
  83. Terres, E., Montiel, M., Le Borgne, S., and Torres, E., Immobilization of chloroperoxidase on mesoporous materials for the oxidation of 4,6-dimethyldibenzothiophene, a recalcitrant organic sulfur compound present in petroleum fractions, Biotechnol. Lett., 2008, vol. 30, no. 1, pp. 173–179.PubMedCrossRefGoogle Scholar
  84. Tian, X., Tang, L., Peng, L., and Li, X., Research on identification and screen of microbial desulfurization strains for petroleum, Front. Earth Sci., 2008, vol. 15, no. 6, pp. 192–198.CrossRefGoogle Scholar
  85. Tinoco, R. and Vazquez-Duhalt, R., Chemical modification of cytochromes c improves their catalytic properties in oxidation of polycyclic aromatic hydrocarbons, Enz. Microb. Technol., 1998, vol. 22, no. 1, pp. 8–12.CrossRefGoogle Scholar
  86. Torres, E. and Vazquez-Duhalt, R., Chemical modification of hemoglobin improves biocatalytic oxidation of PAHs, Biochem. Biophys. Res. Commun., 2000, vol. 273, no. 3, pp. 820–823.PubMedCrossRefGoogle Scholar
  87. Torres, E., Baeza, A., and Vazquez-Duhalt, R., Chemical modification of heme group improves hemoglobin affinity for hydrophobic substrates in organic media, J. Mol. Catal. B: Enzym., 2002, vol. 19–20, pp. 437–441.CrossRefGoogle Scholar
  88. Torres, E. and Aburto, J., Chloroperoxidase-catalyzed oxidation of 4,6-dimethyldibenzothiophene as dimer complexes: evidence for kinetic cooperativity, Arch. Biochem. Biophys., 2005, vol. 437, no. 2, pp. 224–232.PubMedCrossRefGoogle Scholar
  89. Tuli, D. and Kumar, A., Non-conventional technologies for fuel desulphurization, in 19th World Petroleum Congress “A World in Transition: Delivering Energy for Sustainable Growth”, Spain, 2008, vol. 2, pp. 751–759.Google Scholar
  90. Van Hamme, J.D., Singh, A., and Ward, O.P., Recent advances in petroleum microbiology, Microbiol. Mol. Biol. Rev., 2003, vol. 67, no. 4, pp. 503–549.PubMedCrossRefGoogle Scholar
  91. Vazquez-Duhalt, R., Westlake, D.W.S., and Fedorak, P.M., Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents, Appl. Environ. Microbiol., 1994, vol. 60, no. 2, pp. 459–466.PubMedGoogle Scholar
  92. Vazquez-Duhalt, R., Torres, E. Valderrama, B. and Le Borgne, S., Will biochemical catalysis impact the petroleum refining industry?, Energy Fuels, 2002, vol. 16, no. 5, pp. 1239–1250.CrossRefGoogle Scholar
  93. Villasenor, F., Loera, O., Campero, A., and Viniegra-Gonzalez, G., Oxidation of dibenzothiophene by laccase or hydrogen peroxide and deep desulfurization of diesel fuel by the later, Fuel Proc. Technol., 2004, vol. 86, no. 1, pp. 49–59.CrossRefGoogle Scholar
  94. Wang, M.D., Li, W., Shi, Y., Wang, D.H., and Feng, H., Effects of surfactant on biodesulfurization by Corynebacterium sp. ZD-1 in the presence of organic phase, J. Zhejiang Univ. Sci. A, 2006, vol. 7, no. 2, pp. 371–375.CrossRefGoogle Scholar
  95. Watkins, L.M., Rodriguez, R., Schneider, D., Broderick, R., Cruz, M., Chambers, R., Ruckman, E., Cody, M., and Mrachko, G.T., Purification and characterization of the aromatic desulfinase, 2-(20-hydroxyphenyl) benzenesulfinate desulfinase, Arch. Biochem. Biophys., 2003, vol. 415, no. 1, pp. 14–23.PubMedCrossRefGoogle Scholar
  96. Wu, S., Lin, J., and Chan, S.I., Oxidation of dibenzothiophene catalyzed by heme-containing enzymes encapsulated in sol-gel glass. A new form of biocatalysts, Appl. Biochem. Biotechnol., 1994, vol. 47, no. 1, pp. 11–20.PubMedCrossRefGoogle Scholar
  97. Xu, P., Yu, B., Li, F.L., Cai, X.F., and Ma, C.Q., Microbial degradation of sulfur nitrogen and oxygen heterocycles, Trends Microbiol., 2006, vol. 14, no. 9, pp. 398–405.PubMedCrossRefGoogle Scholar
  98. Yu, B., Xu, P., Shi, Q., and Ma, C., Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain, Appl. Environ. Microbiol., 2006, vol. 72, no. 1, pp. 54–58.PubMedCrossRefGoogle Scholar
  99. Zakharyants, A.A., Murygina, V.P., and Kalyuzhnyi, S.V., Biodesulfurization of dibenzothiophene and its derivatives, Usp. Sovrem. Biol., 2005, vol. 125, no. 1, pp. 104–114.Google Scholar
  100. Zaks, A. and Klibanov, A.M., Enzymatic catalysis in non-aqueous solvents, J. Biol. Chem., 1988, vol. 263, no. 7, pp. 3194–3201.PubMedGoogle Scholar
  101. Zhang, H.Y., Shan, G.B., Liu, H.Z., and Xing, J.M., Surface modification of γ-Al2O3 nano-particles with gum Arabic and its applications in adsorption and biodesulfurization, Surf. Coat. Technol., 2007, vol. 201, nos. 16–17, pp. 6917–6921.CrossRefGoogle Scholar
  102. Zhang, H.Y., Liu, Q.F., Li, Y.G., Li, W.L., Xiong, X.C., Xing, J.M., and Liu, H.Z., Selection of adsorbents for in situ coupling technology of adsorptive desulfurization and biodesulfurization, Sci. China: Chem., 2008, vol. 51, no. 1, pp. 69–77.CrossRefGoogle Scholar
  103. Zhang, T., Li, W.L., Chen, X.X., Tang, H., Li, Q., Xing, J.M., and Liu, H.Z., Enhanced biodesulfurization by magnetic immobilized Rhodococcus erythropolis LSSE8-1-vgb assembled with nano-γ-Al2O3, World J. Microbiol. Biotechnol., 2011, vol. 27, no. 2, pp. 299–305.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • N. V. Borzenkova
    • 1
  • I. A. Veselova
    • 1
  • T. N. Shekhovtsova
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations