Tyrosine hydroxylase in the brain and its regulation by glucocorticoids

  • E. V. SukharevaEmail author
  • T. S. Kalinina
  • V. V. Bulygina
  • N. N. Dygalo


Adverse factors of early development can produce long-lasting alterations of the brain neurochemical systems, the physiological functions and behavior. Tyrosine hydroxylase (TH), the key enzyme of catecholamine biosynthesis, determines the activity of the neurochemical system and is induced by stress hormones, glucocorticoids, in vitro and in vivo. Analysis of our own data and the data in the literature concerning the effect of stress hormones, glucocorticoids, in the critical periods of perinatal development on the TH gene expression, the level of the protein and the enzyme activity, as well as consideration of the possible mechanisms of these effects, was the purpose of the review. Administration of dexamethasone or hydrocortisone increases the level of TH mRNA in the brainstem of 20-day-old fetuses and 3-day-old rats in 6 hours; it is accompanied by an increase in the enzyme activity and immunohistochemical detection of the TH protein in the brainstem. A change in the TH gene expression in the critical period of early development leads to an increase in the level of TH mRNA in the brainstem of 25- and 70-day-old rats and the enzyme activity in the brainstem and cerebral cortex of adult animals. The period of TH sensitivity to the glucocorticoid level is agedependent. Administration of hormones on the 8th day of the life is not accompanied by changes in the TH mRNA level and the enzyme activity. The promoter of the TH gene does not have a classical functionally active hormone-dependent element. The mechanism of hormonal induction of the TH expression may be based on the noncanonical pathway of the glucocorticoids as a result of the known protein–protein interaction of the glucocorticoid receptor with other transcription factors, such as proteins of the AP-1 complex. This mechanism in the regulation of the TH expression by dexamethasone was found in the pheochromocytoma cell line. The existence of such mechanism in vivo needs to be explored in futher studies.


tyrosine hydroxylase glucocorticoids ontogenetic programming gene expression brain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altmann, C.R. and Brivanlou, A.H., Neural patterning in the vertebrate embryo, Int. Rev. Cytol., 2001, vol. 203, pp. 447–482.CrossRefPubMedGoogle Scholar
  2. Bademci, G., Vance, J.M., and Wang, L., Tyrosine hydroxylase gene: Another piece of the genetic puzzle of Parkinson’s disease, CNS Neurol. Disord. Drug Targets, 2012, vol. 11, no. 4, pp. 469–481.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barker, D.J., Fetal origins of coronary heart disease, BMJ, 1995, vol. 311, no. 6998, pp. 171–174.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barth, K.A., Kishimoto, Y., Rohr, K.B., Seydler, C., Schulte-Merker, S., and Wilson, S.W., Bmp activity establishes a gradient of positional information throughout the entire neural plate, Development, 1999, vol. 126, no. 22, pp. 4977–4987.PubMedGoogle Scholar
  5. Beck, I.M., Vanden Berghe W., Vermeulen, L., Yamamoto, K.R., Haegeman, G., and De Bosscher, K., Crosstalk in inflammation: The interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases, Endocr. Rev., 2009, vol. 30, no. 7, pp. 830–882.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bingham, B.C., Sheela Rani C.S., Frazer, A., Strong, R., and Morilak, D.A., Exogenous prenatal corticosterone exposure mimics the effects of prenatal stress on adult brain stress response systems and fear extinction behavior, Psychoneuroendocrinology, 2013, vol. 38, no. 11, pp. 2746–2757. doi 10.1016/j.psyneuen.2013.07.003CrossRefPubMedGoogle Scholar
  7. Bonnin, A., de Miguel, R., Rodriguez-Manzaneque, J.C., Fernandez-Ruiz, J.J., Santos, A., and Ramos, J.A., Changes in tyrosine hydroxylase gene expression in mesencephalic catecholaminergic neurons of immature and adult male rats perinatally exposed to cannabinoids, Brain Res. Develop. Brain Res., 1994, vol. 81, no. 1, pp. 147–150.CrossRefGoogle Scholar
  8. Bornstein, S.R., Tian, H., Haidan, A., Böttner, A., Hiroi, N., Eisenhofer, G., McCann, S.M., Chrousos, G.P., and Roffler-Tarlov, S., Deletion of tyrosine hydroxylase gene reveals functional interdependence of adrenocortical and chromaffin cell system in vivo, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 26, pp. 14742–14747. doi 10.1073/pnas.97.26.14742CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boschi, N.M., Takeuchi, K., Sterling, C., and Tank, A.W., Differential expression of polycytosine-binding protein isoforms in adrenal gland, locus coeruleus and midbrain, Neuroscience, 2015, vol. 286, pp. 1–12. doi 10.1016/j.neuroscience.2014.11.038CrossRefPubMedGoogle Scholar
  10. Candy, J. and Collet, C., Two tyrosine hydroxylase genes in teleosts, Biochim. Biophys. Acta, 2005, vol. 1727, no. 1, pp. 35–44.CrossRefPubMedGoogle Scholar
  11. Carson, R.P. and Robertson, D., Genetic manipulation of noradrenergic neurons, J. Pharmacol. Exp. Ther., 2002, vol. 301, no. 2, pp. 410–417.CrossRefPubMedGoogle Scholar
  12. Champagne, D.L., de Kloet, E.R., and Joels, M., Fundamental aspects of the impact of glucocorticoids on the (immature) brain, Semin. Fetal Neonatal Med., 2009, vol. 14, no. 3, pp. 136–142. doi 10.1016/j.siny.2008.11.006CrossRefPubMedGoogle Scholar
  13. Craig, S.P., Buckle, V.J., Lamouroux, A., Mallet, J., and Craig, I., Localization of the human tyrosine hydroxylase gene to 11p15: Gene duplication and evolution of metabolic pathways, Cytogenet. Cell Genet., 1986, vol. 42, nos. 1/2, pp. 29–32.CrossRefPubMedGoogle Scholar
  14. Dent, G.W., Smith, M.A., and Levine, S., Stress-induced alterations in locus coeruleus gene expression during ontogeny, Brain Res. Develop. Brain Res., 2001, vol. 127, no. 1, pp. 23–30.CrossRefGoogle Scholar
  15. Diamond, M.I., Miner, J.N., Yoshinaga, S.K., and Yamamoto, K.R., Transcription factor interactions: Selectors of positive or negative regulation from a single DNA element, Science, 1990, vol. 249, no. 4974, pp. 1266–1272.CrossRefPubMedGoogle Scholar
  16. Dunkley, P.R., Bobrovskaya, L., Graham, M.E., von Nagy-Felsobuki, E.I., and Dickson, P.W., Tyrosine hydroxylase phosphorylation: Regulation and consequences, J. Neurochem., 2004, vol. 91, no. 5, pp. 1025–1043.CrossRefPubMedGoogle Scholar
  17. Dygalo, N.N. and Kalinina, T.S., Effects of the interaction of genotype and glucocorticoids on brain tyrosine hydroxylase activity in rat fetuses, Genetika, 1993, vol. 29, no. 9, pp. 1453–1459.PubMedGoogle Scholar
  18. Dygalo, N.N., Kalinina, T.S., and Shishkina, G.T., Neonatal programming of rat behavior by downregulation of alpha2Aadrenoreceptor gene expression in the brain, Ann. N.Y.: Acad. Sci., 2008, vol. 1148, pp. 409–414. doi 10.1196/annals.1410.063CrossRefGoogle Scholar
  19. Fossom, L.H., Sterling, C.R., and Tank, A.W., Regulation of tyrosine hydroxylase gene transcription rate and tyrosine hydroxylase mRNA stability by cyclic amp and glucocorticoid, Mol. Pharmacol., 1992, vol. 42, no. 5, pp. 898–908.PubMedGoogle Scholar
  20. Friggi-Grelin, F., Coulom, H., Meller, M., Gomez, D., Hirsh, J., and Birman, S., Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase, J. Neurobiol., 2003, vol. 54, no. 4, pp. 618–627. doi 10.1002/neu.10185CrossRefPubMedGoogle Scholar
  21. Fujinaga, M. and Scott, J.C., Gene expression of catecholamine synthesizing enzymes and beta adrenoceptor subtypes during rat embryogenesis, Neurosci. Lett., 1997, vol. 231, no. 2, pp. 108–112.CrossRefPubMedGoogle Scholar
  22. Fung, B.P., Yoon, S.O., and Chikaraishi, D.M., Sequences that direct rat tyrosine-hydroxylase gene-expression, J. Neurochem., 1992, vol. 58, no. 6, pp. 2044–2052.CrossRefPubMedGoogle Scholar
  23. Gallo, L.A., Tran, M., Moritz, K.M., and Wlodek, M.E., Developmental programming: Variations in early growth and adult disease, Clin. Exp. Pharmacol. Physiol., 2013, vol. 40, no. 11, pp. 795–802. doi 10.1111/1440-1681.12092CrossRefPubMedGoogle Scholar
  24. Goridis, C. and Rohrer, H., Specification of catecholaminergic and serotonergic neurons, Nat. Rev. Neurosci., 2002, vol. 3, no. 7, pp. 531–541. doi 10.1038/nrn871CrossRefPubMedGoogle Scholar
  25. Groeneweg, F.L., Karst, H., de Kloet, E.R., and Joels, M., Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling, Mol. Cell. Endocrinol., 2012, vol. 350, no. 2, pp. 299–309. doi 10.1016/j.mce.2011.06.020CrossRefPubMedGoogle Scholar
  26. Guo, S., Brush, J., Teraoka, H., Goddard, A., Wilson, S.W., Mullins, M.C., and Rosenthal, A., Development of noradrenergic neurons in the zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein Soulless/Phox2a, Neuron, 1999, vol. 24, no. 3, pp. 555–566.CrossRefPubMedGoogle Scholar
  27. Hagerty, T., Morgan, W.W., Elango, N., and Strong, R., Identification of a glucocorticoid-responsive element in the promoter region of the mouse tyrosine hydroxylase gene, J. Neurochem., 2001, vol. 76, no. 3, pp. 825–834.CrossRefPubMedGoogle Scholar
  28. Harris, A. and Seckl, J., Glucocorticoids, prenatal stress and the programming of disease, Horm. Behav., 2011, vol. 59, no. 3, pp. 279–289. doi 10.1016/j.yhbeh.2010.06.007CrossRefPubMedGoogle Scholar
  29. Haycock, J.W., Species differences in the expression of multiple tyrosine hydroxylase protein isoforms, J. Neurochem., 2002, vol. 81, no. 5, pp. 947–953.CrossRefPubMedGoogle Scholar
  30. Hebert, M.A., Serova, L.I., and Sabban, E.L., Single and repeated immobilization stress differentially trigger induction and phosphorylation of several transcription factors and mitogen-activated protein kinases in the rat locus coeruleus, J. Neurochem., 2005, vol. 95, no. 2, pp. 484–498.CrossRefPubMedGoogle Scholar
  31. Herlenius, E. and Lagercrantz, H., Development of neurotransmitter systems during critical periods, Exp. Neurol., 2004, vol. 190, pp. 8–21. doi 10.1016/j.expneurol.2004.03.027CrossRefGoogle Scholar
  32. Hernandez-Sanchez, C., Bartulos, O., Valenciano, A.I., Mansilla, A., and de Pablo, F., The regulated expression of chimeric tyrosine hydroxylaseinsulin transcripts during early development, Nucl. Acids, 2006, vol. 34, no. 12, pp. 3455–3464.CrossRefGoogle Scholar
  33. Hippenmeyer, S., Kramer, I., and Arber, S., Control of neuronal phenotype: What targets tell the cell bodies, Trends Neurosci., 2004, vol. 27, no. 8, pp. 482–488. doi 10.1016/j.tins.2004.05.012CrossRefPubMedGoogle Scholar
  34. Hirsch, M.R., Tiveron, M.C., Guillemot, F., Brunet, J.F., and Goridis, C., Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system, Development, 1998, vol. 125, no. 4, pp. 599–608.PubMedGoogle Scholar
  35. Holm, P.C., Rodriguez, F.J., Kele, J., Castelo-Branco, G., Kitajewski, J., and Arenas, E., BMPs, FGF8 and Wnts regulate the differentiation of locus coeruleus noradrenergic neuronal precursors, J. Neurochem., 2006, vol. 99, no. 1, pp. 343–352. doi 10.1111/j.1471-4159.2006.04039.xCrossRefPubMedGoogle Scholar
  36. Kalinina, T.S. and Dygalo, N.N., Development of the brain noradrenergic system in rats after prenatal exposure to corticosterone, Izv. Akad. Nauk, Ser. Biol., 2013, vol. 4, pp. 447–452.Google Scholar
  37. Kalinina, T.S., Shishkina, G.T., and Dygalo, N.N., Induction of tyrosine hydroxylase gene expression by glucocorticoids in the perinatal rat brain is age-dependent, Neurochem. Res, 2012, vol. 37, no. 4, pp. 811–818.CrossRefPubMedGoogle Scholar
  38. Kapoor, A., Petropoulos, S., and Matthews, S.G., Fetal programming of hypothalamic-pituitary-adrenal (HPA) axis function and behavior by synthetic glucocorticoids, Brain Res. Rev., 2008, vol. 57, no. 2, pp. 586–595. doi 10.1016/j.brainresrev.2007.06.013CrossRefPubMedGoogle Scholar
  39. Kassel, O. and Herrlich, P., Crosstalk between the glucocorticoid receptor and other transcription factors: Molecular aspects, Mol. Cell. Endocrinol., 2007, vol. 275, nos. 1–2, pp. 13–29.CrossRefPubMedGoogle Scholar
  40. Kobayashi, K., Morita, S., Sawada, H., Mizuguchi, T., Yamada, K., Nagatsu, I., Hata, T., Watanabe, Y., Fujita, K., and Nagatsu, T., Targeted disruption of the tyrosinehydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice, J. Biol. Chem., 1995, vol. 270, no. 45, pp. 27235–27243.CrossRefPubMedGoogle Scholar
  41. Kreider, M.L., Tate, C.A., Cousins, M.M., Oliver, C.A., Seidler, F.J., and Slotkin, T.A., Lasting effects of developmental dexamethasone treatment on neural cell number and size, synaptic activity, and cell signaling: critical periods of vulnerability, dose-effect relationships, regional targets, and sex selectivity, Neuropsychopharmacology, 2006, vol. 31, no. 1, pp. 12–35. doi 10.1038/sj.npp.1300783PubMedGoogle Scholar
  42. Kumer, S.C. and Vrana, K.E., Intricate regulation of tyrosine hydroxylase activity and gene expression, J. Neurochem., 1996, vol. 67, no. 2, pp. 443–462.CrossRefPubMedGoogle Scholar
  43. Kvetnansky, R., Sabban, E.L., and Palkovits, M., Catecholaminergic systems in stress: structural and molecular genetic approaches, Physiol. Rev., 2009, vol. 89, no. 2, pp. 535–606.CrossRefPubMedGoogle Scholar
  44. Langlais, D., Couture, C., Balsalobre, A., and Drouin, J., The Stat3/GR interaction code: predictive value of direct/indirect DNA recruitment for transcription outcome, Mol. Cell, 2012, vol. 47, no. 1, pp. 38–49. doi 10.1016/j.molcel.2012.04.021CrossRefPubMedGoogle Scholar
  45. Lenartowski, R. and Goc, A., Epigenetic, transcriptional and posttranscriptional regulation of the tyrosine hydroxylase gene, Int. J. Dev. Neurosci., 2011, vol. 29, no. 8, pp. 873–883.CrossRefPubMedGoogle Scholar
  46. Lewis, E.J., Tank, A.W., Weiner, N., and Chikaraishi, D.M., Regulation of tyrosine hydroxylase mRNA by glucocorticoid and cyclic AMP in a rat pheochromocytoma cell line. Isolation of a cDNA clone for tyrosine hydroxylase mRNA, J. Biol. Chem., 1983, vol. 258, no. 23, pp. 14632–14637.PubMedGoogle Scholar
  47. Liberman, A.C., Refojo, D., Druker, J., Toscano, M., Rein, T., Holsboer, F., and Arzt, E., The activated glucocorticoid receptor inhibits the transcription factor t-bet by direct protein-protein interaction, FASEB J., 2007, vol. 21, no. 4, pp. 1177–1188. doi 10.1096/fj.06-7452comCrossRefPubMedGoogle Scholar
  48. Lopez-Sanchez, C., Bartulos, O., Martinez-Campos, E., Ganan, C., Valenciano, A.I., Garcia-Martinez, V., De Pablo, F., and Hernandez-Sanchez, C., Tyrosine hydroxylase is expressed during early heart development and is required for cardiac chamber formation, Cardiovasc. Res., 2010, vol. 88, no. 1, pp. 111–120.CrossRefPubMedGoogle Scholar
  49. Makino, S., Smith, M.A., and Gold, P.W., Regulatory role of glucocorticoids and glucocorticoid receptor mRNA levels on tyrosine hydroxylase gene expression in the locus coeruleus during repeated immobilization stress, Brain Res., 2002, vol. 943, no. 2, pp. 216–223.CrossRefPubMedGoogle Scholar
  50. Markey, K.A., Towle, A.C., and Sze, P.Y., Glucocorticoid influence on tyrosine hydroxylase activity in mouse locus coeruleus during postnatal development, Endocrinology, 1982, vol. 111, no. 5, pp. 1519–1523. doi 10.1210/endo-111-5-1519CrossRefPubMedGoogle Scholar
  51. Markham, J.A. and Koenig, J.I., Prenatal stress: Role in psychotic and depressive diseases, Psychopharmacology, 2011, vol. 214, no. 1, pp. 89–106. doi 10.1007/s00213-010-2035-0CrossRefPubMedGoogle Scholar
  52. Matthews, K., Dalley, J.W., Matthews, C., Tsai, T.H., and Robbins, T.W., Periodic maternal separation of neonatal rats produces region- and gender-specific effects on biogenic amine content in postmortem adult brain, Synapse, 2001, vol. 40, no. 1, pp. 1–10. doi 10.1002/1098-2396(200104)40:1<1::AID-SYN1020>3.0.CO;2-ECrossRefPubMedGoogle Scholar
  53. McArthur, S., McHale, E., and Gillies, G.E., The size and distribution of midbrain dopaminergic populations are permanently altered by perinatal glucocorticoid exposure in a sexregion- and time-specific manner, Neuropsychopharmacology, 2007, vol. 32, no. 7, pp. 1462–1476. doi 10.1038/sj.npp.1301277CrossRefPubMedGoogle Scholar
  54. Morin, X., Cremer, H., Hirsch, M.R., Kapur, R.P., Goridis, C., and Brunet, J.F., Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a, Neuron, 1997, vol. 18, no. 3, pp. 411–423.CrossRefPubMedGoogle Scholar
  55. Nagamoto-Combs, K., Piech, K.M., Best, J.A., Sun, B., and Tank, A.W., Tyrosine hydroxylase gene promoter activity is regulated by both cyclic AMP-responsive element and AP1 sites following calcium influx. Evidence for cyclic ampresponsive element binding protein-independent regulation, J. Biol. Chem., 1997, vol. 272, no. 9, pp. 6051–6058.CrossRefPubMedGoogle Scholar
  56. Nagatsu, T., Levitt, M., and Udenfriend, S., Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis, J. Biol. Chem., 1964, vol. 2910-2917.Google Scholar
  57. Naumenko, E.V. and Dygalo, N.N., Noradrenergic Brain Mechanisms and Emotional Stress in Adult Rats after Prenatal Hydrocortisone Treatment. Biogenic Amines in Development, Amsterdam: Elsevier/North Holland Biomedical Press, 1980, pp. 373–388.Google Scholar
  58. Newton, R. and Holden, N.S., Separating transrepression and transactivation: A distressing divorce for the glucocorticoid receptor?, Mol. Pharmacol., 2007, vol. 72, no. 4, pp. 799–809.CrossRefPubMedGoogle Scholar
  59. Oakley, R.H. and Cidlowski, J.A., The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease, J. Allergy Clin. Immunol., 2013, vol. 132, no. 5, pp. 1033–1044. doi 10.1016/j.jaci.2013.09.007CrossRefPubMedPubMedCentralGoogle Scholar
  60. Okada, Y., Saika, S., Shirai, K., Ohnishi, Y., and Senba, E., Expression of AP-1 (c-fos/c-jun) in developing mouse corneal epithelium, Graefe’s Archive for Clinical and Experimental Ophthalmology = Albrecht von Graefes Archiv fur Klinische und Experimentelle Ophthalmologie, 2003, vol. 241, no. 4, pp. 330–333.CrossRefPubMedGoogle Scholar
  61. Pattyn, A., Goridis, C., and Brunet, J.F., Specification of the central noradrenergic phenotype by the homeobox gene Phox2b, Mol. Cell. Neurosci., 2000, vol. 15, no. 3, pp. 235–243. doi 10.1006/mcne.1999.0826CrossRefPubMedGoogle Scholar
  62. Paulding, W.R., Schnell, P.O., Bauer, A.L., Striet, J.B., Nash, J.A., Kuznetsova, A.V., and Czyzyk-Krzeska, M.F., Regulation of gene expression for neurotransmitters during adaptation to hypoxia in oxygensensitive neuroendocrine cells, Microsc. Res. Techniq., 2002, vol. 59, no. 3, pp. 178–187. doi 10.1002/jemt.10192CrossRefGoogle Scholar
  63. Pennypacker, K.R., AP-1 transcription factor complexes in CNS disorders and development, J. Florida Med. Assoc., 1995, vol. 82, no. 8, pp. 551–554.Google Scholar
  64. Pfahl, M., Nuclear receptor/AP-1 interaction, Endocr. Rev., 1993, vol. 14, no. 5, pp. 651–658.PubMedGoogle Scholar
  65. Puymirat, J., Faivre-Bauman, A., Bizzini, B., and Tixier-Vidal, A., Prenatal and postnatal ontogenesis of neurotransmitter- synthetizing enzymes and [125I]tetanus toxin binding capacity in the mouse hypothalamus, Brain Res., 1982, vol. 255, no. 2, pp. 199–206.CrossRefPubMedGoogle Scholar
  66. Qian, Y., Fritzsch, B., Shirasawa, S., Chen, C.L., Choi, Y., and Ma, Q., Formation of brainstem (nor)adrenergic centers and first-order relay visceral sensory neurons is dependent on homeodomain protein Rnx/Tlx3, Genes Dev., 2001, vol. 15, no. 19, pp. 2533–2545.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Radcliffe, P.M., Sterling, C.R., and Tank, A.W., Induction of tyrosine hydroxylase mRNA by nicotine in rat midbrain is inhibited by mifepristone, J. Neurochem., 2009, vol. 109, no. 5, pp. 1272–1284. doi 10.1111/j.1471-4159.2009.06056.xCrossRefPubMedPubMedCentralGoogle Scholar
  68. Raivich, G. and Behrens, A., Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain, Progr. Neurobiol., 2006, vol. 78, no. 6, pp. 347–363.CrossRefGoogle Scholar
  69. Rani, C.S., Elango, N., Wang, S.S., Kobayashi, K., and Strong, R., Identification of an activator protein-1-like sequence as the glucocorticoid response element in the rat tyrosine hydroxylase gene, Mol. Pharmacol., 2009, vol. 75, no. 3, pp. 589–598.CrossRefPubMedGoogle Scholar
  70. Rani, C.S.S., Soto-Pina, A., Iacovitti, L., and Strong, R., Evolutionary conservation of an atypical glucocorticoidresponsive element in the human tyrosine hydroxylase gene, J. Neurochem., 2013, vol. 126, no. 1, pp. 19–28. doi 10.1111/jnc.12294CrossRefGoogle Scholar
  71. Reynolds, R.M., Programming effects of glucocorticoids, Clin. Obstet. Gynecol., 2013, vol. 56, no. 3, pp. 602–609.CrossRefPubMedGoogle Scholar
  72. Rios, M., Habecker, B., Sasaoka, T., Eisenhofer, G., Tian, H., Landis, S., Chikaraishi, D., and Roffler-Tarlov, S., Catecholamine synthesis is mediated by tyrosinase in the absence of tyrosine hydroxylase, J. Neurosci., 1999, vol. 19, no. 9, pp. 3519–3526.PubMedGoogle Scholar
  73. Romano, G., Suon, S., Jin, H., Donaldson, A.E., and Iacovitti, L., Characterization of five evolutionary conserved regions of the human tyrosine hydroxylase (TH) promoter: Implications for the engineering of a human TH minimal promoter assembled in a self-inactivating lentiviral vector system, J. Cell Physiol., 2005, vol. 204, no. 2, pp. 666–677.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sabban, E.L. and Kvetnansky, R., Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events, Trends Neurosci., 2001, vol. 24, no. 2, pp. 91–98.CrossRefPubMedGoogle Scholar
  75. Sabban, E.L., Hebert, M.A., Liu, X., Nankova, B., and Serova, L., Differential effects of stress on gene transcription factors in catecholaminergic systems, Ann. N. Y. Acad. Sci., 2004, vol. 1032, pp. 130–140.CrossRefPubMedGoogle Scholar
  76. Sapolsky, R.M., Romero, L.M., and Munck, A.U., How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions, Endocr. Rev., 2000, vol. 21, no. 1, pp. 55–89.PubMedGoogle Scholar
  77. Shishkina, G.T., Kalinina, T.S., and Dygalo, N.N., Attenuation of alpha2A-adrenergic receptor expression in neonatal rat brain by RNA interference or antisense oligonucleotide reduced anxiety in adulthood, Neuroscience, 2004a, vol. 129, no. 3, pp. 521–528. doi 10.1016/j.neuroscience.2004.08.015CrossRefPubMedGoogle Scholar
  78. Shishkina, G.T., Kalinina, T.S., Popova, N.K., and Dygalo, N.N., Influence of neonatal short-term reduction in brainstem alpha2A-adrenergic receptors on receptor ontogenesis, acoustic startle reflex, and prepulse inhibition in rats, Behav. Neurosci., 2004b, vol. 118, no. 6, pp. 1285–1292. doi 10.1037/0735-7044.118.6.1285CrossRefPubMedGoogle Scholar
  79. Simon, H.H., Scholz, C., and O’Leary, D.D., Engrailed genes control developmental fate of serotonergic and noradrenergic neurons in mid- and hindbrain in a gene dosedependent manner, Mol. Cell. Neurosci., 2005, vol. 28, no. 1, pp. 96–105. doi 10.1016/j.mcn.2004.08.016CrossRefPubMedGoogle Scholar
  80. Slotkin, T.A., Kreider, M.L., Tate, C.A., and Seidler, F.J., Critical prenatal and postnatal periods for persistent effects of dexamethasone on serotonergic and dopaminergic systems, Neuropsychopharmacology, 2006, vol. 31, no. 5, pp. 904–911. doi 10.1038/sj.npp.1300892CrossRefPubMedGoogle Scholar
  81. Sukhareva, E.V., Dygalo, N.N., and Kalinina, T.S., Influence of dexamethasone on the expression of early response genes c-fos and c-jun in different parts of the neonatal brain, (Moscow, 2016).Google Scholar
  82. Sukhareva, E.V., Kalinina, T.S., Lanshakov, D.A., Bulygina, V.V., and Dygalo, N.N., Proteins of the AP-1 complex in induction of brain tyrosinhydroxylase by glucocorticoids in early ontogenesis, Mater. Sed’m. Vseros. nauch.-prakt. konf. “Fundamental’nye aspekty kompensatorno-prisposobitel’nykh protsessov” i Molodezhn. simp. “Molekulyarno-kletochnye i mediko-ekologicheskie problemy kompensatsii i prisposobleniya” (Proc. 7th Sci.-Pract. Conf. Fundamental Aspects of Compensatory and Adaptive Processes and Youth Symp. Molecular-Cellular and Medical-Environmental Issues of Compensation and Adaptation), 2015, pp. 271–272.Google Scholar
  83. Sun, B., Chen, X., Xu, L., Sterling, C., and Tank, A.W., Chronic nicotine treatment leads to induction of tyrosine hydroxylase in locus ceruleus neurons: The role of transcriptional activation, Mol. Pharmacol., 2004, vol. 66, no. 4, pp. 1011–1021.CrossRefPubMedGoogle Scholar
  84. Tank, A.W., Curella, P., and Ham, L., Induction of mRNA for tyrosine hydroxylase by cyclic AMP and glucocorticoids in a rat pheochromocytoma cell line: Evidence for the regulation of tyrosine hydroxylase synthesis by multiple mechanisms in cells exposed to elevated levels of both inducing agents, Mol. Pharmacol., 1986, vol. 30, no. 5, pp. 497–503.PubMedGoogle Scholar
  85. Tank, A.W., Xu, L., Chen, X., Radcliffe, P., and Sterling, C.R., Post-transcriptional regulation of tyrosine hydroxylase expression in adrenal medulla and brain, Ann. N. Y. Acad. Sci., 2008, vol. 1148, pp. 238–248.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Tekin, I., Roskoski, R., Jr., Carkaci-Salli, N., and Vrana, K.E., Complex molecular regulation of tyrosine hydroxylase, J. Neur. Transm. (Vienna), 2014, vol. 121, no. 12, pp. 1451–1481. doi 10.1007/s00702-014-1238-7CrossRefGoogle Scholar
  87. Teurich, S. and Angel, P., The glucocorticoid receptor synergizes with Jun homodimers to activate AP-1-regulated promoters lacking GR binding sites, Chem. Sens., 1995, vol. 20, no. 2, pp. 251–255.CrossRefGoogle Scholar
  88. Thomas, S.A., Matsumoto, A.M., and Palmiter, R.D., Noradrenaline is essential for mouse fetal development, Nature, 1995, vol. 374, no. 6523, pp. 643–646.CrossRefPubMedGoogle Scholar
  89. Vogel-Höpker, A. and Rohrer, H., The specification of noradrenergic locus coeruleus (LC) neurones depends on bone morphogenetic proteins (BMPs), Development, 2002, vol. 129, no. 4, pp. 983–991.PubMedGoogle Scholar
  90. Wurst, W. and Bally-Cuif, L., Neural plate patterning: Upstream and downstream of the isthmic organizer, Nat. Rev. Neurosci., 2001, vol. 2, no. 2, pp. 99–108. doi 10.1038/35053516CrossRefPubMedGoogle Scholar
  91. Yamamoto, K., Ruuskanen, J.O., Wullimann, M.F., and Vernier, P., Two tyrosine hydroxylase genes in vertebrates. New dopaminergic territories revealed in the zebrafish brain, Mol. Cell. Neurosci., 2010, vol. 43, no. 4, pp. 394–402.CrossRefPubMedGoogle Scholar
  92. Zhong, S., Quealy, J.A., Bode, A.M., Nomura, M., Kaji, A., Ma, W.Y., and Dong, Z., Organ-specific activation of activator protein-1 in transgenic mice by 12-o-tetradecanoylphorbol-13-acetate with different administration methods, Cancer Res., 2001, vol. 61, no. 10, pp. 4084–4091.PubMedGoogle Scholar
  93. Zhou, Q.Y., Quaife, C.J., and Palmiter, R.D., Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development, Nature, 1995, vol. 374, no. 6523, pp. 640–643.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. V. Sukhareva
    • 1
    Email author
  • T. S. Kalinina
    • 1
    • 2
  • V. V. Bulygina
    • 1
  • N. N. Dygalo
    • 1
    • 2
  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations