Advertisement

Russian Journal of Genetics: Applied Research

, Volume 6, Issue 8, pp 864–870 | Cite as

The ILE462VAL polymorphism of the cytochrome P450 CYP1A1 gene in the Tundra Nenets of the Yamalo-Nenets Autonomous Okrug, Nganasans of the Taimyr Peninsula, and Russians of Siberia

  • R. P. Tiis
  • L. P. Osipova
  • T. V. Churkina
  • L. E. Tabikhanova
  • D. V. Lichman
  • E. N. Voronina
  • M. L. Filipenko
Article
  • 13 Downloads

Abstract

This paper concerns a polymorphism of the cytochrome Р450 CYP1A1 gene, the CYP1A1*2C variant (Ile462Val, rs1048943). This substitution results in the doubling of enzyme activity, which leads to the accumulation of active intermediates and increases the risk of DNA mutations and chemically induced carcinogenesis. It has been demonstrated that the 462Val allele may be a risk factor in some oncological and other multifactorial diseases. This study was carried out on Tundra Nenets of the Yamalo-Nenets Autonomous Okrug (n = 271), Nganasans in the Taimyr Peninsula (n = 186), and Russians in North Siberia (n = 267). The cohorts did not include descendants of mixed marriages. Genotyping was performed using real-time PCR with competitive TaqMan allele-specific probes. The frequency of the 462Val allele in the Tundra Nenets cohort was 23.8% (95% CI 20.4–27.6%), which corresponds to the frequency range found in East Asian populations and is higher than the values typical of Caucasoid populations. The 462Val allele frequency in the Russian cohort was 5.8% (95% CI 4.1–8.1%), which corresponds to the frequency range of Caucasoid populations. The 462Val allele frequency in the Nganasans cohort was 39.0% (95% CI 34.2–44.0%), which is higher than the frequencies found in the European, Asian and African populations. Frequencies of the 462Val variant close to that in Nganasans have been observed in Greenland’s Inuits, Native Americans, and Southern Chinese. Thus, in the populations of Tundra Nenets and Nganasans the CYP1A1 462Val allele occurs at a high frequency, greater than those typical of Caucasoid populations. A high-frequency occurrence of the 462Val allele may be indicative of a population-wide risk of diseases influenced by this genetic polymorphism, especially when the traditional mainstays are gone or previously unknown ecotoxicants appear in the areas.

Keywords

Tundra Nenets Nganasans Russians xenobiotics real-time PCR CYP1A1 Ile462Val 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Androutsopoulos, V.P., Tsatsakis, A.M., and Spandidos, D.A., Cytochrome p450 CYP1A1: Wider roles in cancer progression and prevention, BMC Cancer, 2009, vol. 9, pp. 187–203. doi 10.1186/1471-2407-9-187CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baranov, V.S., Baranova, E.B., and Ivashchenko, T.E., Genom cheloveka i “geny predraspolozhennosti” (Vvedenie v prediktivnuyu meditsinu) (Human Genome and Susceptibility Genes (Introduction to Predictive Medicine)), St. Petersburg: Intermedika, 2000.Google Scholar
  3. Bjerregaard, P., Dewailly, E., Ayotte, P., Pars, T., Ferron, L., and Mulvad, G., Exposure of Inuit in Greenland to organochlorines through the marine diet, J. Toxicol. Environ. Heal. A, 2001, vol. 62, no. 2, pp. 69–81. doi 10.1080/009841001455490CrossRefGoogle Scholar
  4. Boyapati, S.M., Shu, X.O., Gao, Y.T., Cai, Q., Jin, F., and Zheng, W., Polymorphisms in CYP1A1 and breast carcinoma risk in a population-based case-control study of Chinese women, Cancer, 2005, vol. 103, no. 10, pp. 2228–2235. doi doi 10.1002/cncr.21056CrossRefPubMedGoogle Scholar
  5. Butkiewicz, D., Cole, K.J., Phillips, D.H., Harris, C.C., and Chorazy, M., GSTMI,GSTP1,CYP1A1,and CYP2D6 polymorphisms in lung cancer patients from an environmentally polluted region of Poland: Correlation with lung DNA adduct levels, Eur. J. Cancer Prev., 1999, vol. 8, no. 4, pp. 315–324. doi 10.1097/00008469-199908000-00008CrossRefPubMedGoogle Scholar
  6. Chen, S., Xue, K., Xu, L., Ma, G., and Wu, J., Polymorphisms of the CYP1A1 and GSTM1 genes in relation to individual susceptibility to lung carcinoma in Chinese population, Mutat. Res. Mutat. Res. Genomics, 2001, vol. 458, nos. 1–2, pp. 41–47. doi 10.1016/S1383-5726(01)00011-5CrossRefGoogle Scholar
  7. Chen, J., Cheng, M., Li, Y., and Jiang, C., Relationship between CYP1A1 genetic polymorphisms and renal cancer in China, Asian Pac. J. Cancer Prev., 2011, vol. 12, no. 9, pp. 2163–2166. 2008.00971 doi 10.3724/SP.J.1008PubMedGoogle Scholar
  8. Derbeneva, O.A., Starikovskaya, E.B., Volodko, N.V., Wallace, D.C., and Sukernik, R.I., Mitochondrial DNA variation in the Kets and Nganasans and its implications for the initial peopling of Northern Eurasia, Russ. J. Genet., 2002, vol. 38, no. 11, pp. 1316–1321.CrossRefGoogle Scholar
  9. Dolgikh, B.O., Origin Nganasans, in Tr. In-Ta etnografii (Proceedings of the Ethnography Institute), 1952, vol. 18, pp. 5–87.Google Scholar
  10. Duzhak, T.G., Gutkina, N.I., Mitrofanov, D.V., Afanas’eva, O.A., Lyakhovich, V.V., Posukh, O.L., Kryukov, Yu.A., and Osipova, L.P., The study of polymorphisms of genes CYP1A1 and CYP2D6 in the populations of Tundra Nenets and Caucasians of Western Siberia, Genetika (Moscow), 1998, vol. 34, no. 11, pp. 1555–1558.Google Scholar
  11. Gallegos-Arreola, M.P., Batista-González, C.M., Delgado-Lamas, J.L., Figuera, L.E., Puebla-Pérez, A.M., Arnaud-López, L., Peralta-Leal, V., Ramírez-Jirano, L.J., and Zúñiga-González, G.M., Cytochrome P4501A1 polymorphism is associated with susceptibility to acute lymphoblastic leukemia in adult Mexican patients, Blood Cells Mol. Dis., 2004, vol. 33, no. 3, pp. 326–329. doi 10.1016/j.bcmd.2004.07.002CrossRefPubMedGoogle Scholar
  12. Garte, S., Gaspari, L., Alexandrie, A.-K., Ambrosone, C., Autrup, H., Autrup, J.L., Baranova, H., Bathum, L., Benhamou, S., Boffetta, P., Bouchardy, C., Breskvar, K., Brockmoller, J., Cascorbi, I., Clapper, M.L., et al., Metabolic gene polymorphism frequencies in control populations, Cancer Epidemiol. Biomarkers Prev., 2001, vol. 10, no. 12, pp. 1239–1248.PubMedGoogle Scholar
  13. Ghisari, M.E., Polimorphisms in phase I and phase II genes and breast cancer risk and relations to persistent organic pollutant exposure: A case-control study in Inuit women, Environ. Health, 2014, vol 13, no. 1, p. 19. doi 10.1186/1476-069x-13-19CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ghisari, M., Long, M., and Bonefeld-Jorgensen, E.C., Genetic polymorphisms in CYP1A1,CYP1B1,and COMT genes in Greenlandic Inuit and Europeans, Int. J. Circumpolar Health, 2013, vol. 72. http://www.circumpolarhealthjournal. net/index.php/ijch/article/view/21113. Accessed July 29, 2015. doi 10.3402/ijch.v72i0.21113Google Scholar
  15. Gichev, Yu.P., Zagryaznenie okruzhayushchei sredy i zdorov’e cheloveka (Contamination of the Environment and Human Health), Novosibirsk: SO RAMN, 2002.Google Scholar
  16. Goltsova, T.V., Osipova, L.P., Zhadanov, S.I., and Villems, R., The effect of marriage migration on the genetic structure of the Taimyr Nganasan population: Genealogical analysis inferred from mtDNA markers, Russ. J. Genet., 2005, vol. 41, no. 7, pp. 779–788.CrossRefGoogle Scholar
  17. Gulyaeva, L.F. and Rais, R.Kh., Biologicheskie effekty toksicheskikh soedinenii (Biological Effects of Toxic Compounds), Novosibirsk: NGU, 2005.Google Scholar
  18. Hahn, M., Hagedorn, G., Kuhlisch, E., Schackert, H.K., and Eckelt, U., Genetic polymorphisms of drug-metabolizing enzymes and susceptibility to oral cavity cancer, Oral Oncol., 2002, vol. 38, no. 5, pp. 486–490. doi 10.1016/S1368-8375(01)00086-0CrossRefPubMedGoogle Scholar
  19. Hasler, J.A., Estabrook, R., Murray, M., Pikuleva, I., Waterman, M., Capdevila, J., Holla, V., Helvig, C., Falck, J.R., Farrell, G., Kaminsky, L.S., Spivack, S.D., Boitier, E., and Beaune, F., Human cytochromes p450, Mol. Aspects Med., 1999, vol. 20, nos. 1–2, pp. 1–137. doi 10.1016/S0098-2997(99)00005-9CrossRefGoogle Scholar
  20. Hung, R.J., Boffetta, P., Brockmoller, J., Butkiewicz, D., Cascorbi, I., Clapper, M.L., Garte, S., Haugen, A., Hirvonen, A., Anttila, S., Kalina, I., Le Marchand, L., London, S.J., Rannug, A., Romkes, M., et al., CYP1A1 and GSTM1 genetic polymorphisms and lung cancer risk in Caucasian non-smokers: A pooled analysis, Carcinogenesis, 2003, vol. 24, no. 5, pp. 875–882. doi 10.1093/carcin/bgg026CrossRefPubMedGoogle Scholar
  21. Ivaschenko, T.E., Shved, N.Yu., Kramareva, N.L., Aylamazian, E.K., and Baranov, V.S., Analysis of polymorphic alleles of the genes encoding the Phase 1 and 2 detoxication enzymes in patients with endometriosis, Russ. J. Genet., 2003, vol. 39, no. 4, pp. 427–430.CrossRefGoogle Scholar
  22. Izmailov, A.A., Pavlov, V.N., Izmailova, S.M., Mustafin, A.T., Urmantsev, M.F., Alekseev, A.V., Zagitov, A.R., Viktorova, T.V., and Nogmanova, V.A., Molecular genetic markers of prognosis in superficial bladder cancer, Med. Vestn. Bashkortostana, 2011, vol. 6, no. 5, pp. 47–51.Google Scholar
  23. Joseph, T., Kusumakumary, P., Chacko, P., Abraham, A., and Radhakrishna Pillai, M., Genetic polymorphism of CYP1A1, CYP2D6, GSTM1, and GSTT1 and susceptibility to acute lymphoblastic leukaemia in Indian children, Pediatr. Blood Cancer, 2004, vol. 43, no. 5, pp. 560–567. doi 10.1002/pbc.20167Google Scholar
  24. Karafet, T.M., Posukh, O.L., and Osipova, L.P., Population genetic studies of indigenous inhabitants of the Siberian North, Sib. Ekol. Zh., 1994, vol. 1, no. 2, pp. 113–127.Google Scholar
  25. Kochetova, O.V., Korytina, G.F., Akhmadishina, L.Z., Iskhakova, G.M., and Viktorova, T.V., Analysis of the cytochrome P450 1A1 (CYP1A1) gene polymorphism in the ethnic groups of the republic of Bashkortostan, Russ. J. Genet., 2008, vol. 44, no. 12, pp. 1454–1460.CrossRefGoogle Scholar
  26. Korytina, G.F., Yanbaeva, D.G., and Viktorova, T.V., Polymorphisms of the cytochrome P450 (CYP1A1, CYP2E1) and microsomal epoxide hydrolase (mEPHX) genes in cystic fibrosis and chronic respiratory disease, Mol. Biol. (Moscow), 2003, vol. 37, no. 5, pp. 663–670.Google Scholar
  27. Li, Y., Millikan, R.C., Bell, D.A., Cui, L., Tse, C.K., Newman, B., and Conway, K., Polychlorinated biphenyls, cytochrome P450 1A1 (CYP1A1) polymorphisms, and breast cancer risk among african american women and white women in North Carolina: A population based case-control study, Breast. Cancer Res., 2004, vol. 7, no. 1, pp. 12–18. doi 10.1186/bcr941Google Scholar
  28. London, S.J., Yuan, J.-M., Coetzee, G.A., Gao, Y.T., Ross, R.K., and Yu, M.C., CYP1A1 I462V genetic polymorphism and lung cancer risk in a cohort of men in Shanghai, China, Cancer Epidemiol. Biomarkers Prev., 2000, vol. 9, no. 9, pp. 987–991.PubMedGoogle Scholar
  29. Lyakhovich, V.V., Vavilin, V.A., Makarova, S.I., and Grishanova, A.Yu., Ecogenetic aspect of polyfactorial diseases, Inf. Vestn. VOGiS, 2006, vol. 10, no. 3, pp. 514–519.Google Scholar
  30. Marques, C.F.S., Koifman, S., Koifman, R.J., Boffetta, P., Brennan, P., and Hatagima, A., Influence of CYP1A1, CYP2E1, GSTM3 and NAT2 genetic polymorphisms in oral cancer susceptibility: Results from a case-control study in Rio de Janeiro, Oral Oncol., 2006, vol. 42, no. 6, pp. 632–637. doi 10.1016/j.oraloncology.2005.11.003CrossRefPubMedGoogle Scholar
  31. Minina, V.I., Druzhinin, V.G., Glushkov, A.N., Golovina, T.A., Apal’ko, S.V., Volkov, A.N., Akhmat’yanova, V.R., Lunina, A.A., and Larionov, A.V., Genotoxic effects of complex influence of radon and heavy metals, depending on gene polymorphisms in enzymes of the monooxygenase system, Ekol. Genet., 2009, vol. 7, no. 3, pp. 53–60.Google Scholar
  32. Nakachi, K., Imai, K., Hayashi, S., and Kawajiri, K., Polymorphisms of the CYP1A1 and glutathione S-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population, Cancer Res., 1993, vol. 53, no. 13, pp. 2994–2999. doi 10.1016/0169-5002(94)90751-xPubMedGoogle Scholar
  33. Nebert, D.W. and Dalton, T.P., The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis, Nat. Rev. Cancer, 2006, vol. 6, no. 12, pp. 947–960. doi 10.1038/nrc2015CrossRefPubMedGoogle Scholar
  34. Osipova, L.P. and Sukernik, R.I., Immunoglobulin allotypes in aboriginal populations of the Taimir Peninsula, J. Immunogenet., 1983, vol. 10, no. 1, pp. 11–16. doi 10.1111/j.1744-313X.1983.tb01011.xCrossRefPubMedGoogle Scholar
  35. Osipova, L.P., Genetic markers of immunoglobulins (system Gm) for the evaluation of migration and cross-breeding in human populations in Northern Siberia, Sib. Ekol. Zh., 1994, vol. 1, no. 2, pp. 129–140.Google Scholar
  36. Osipova, L.P., Posukh, O.L., Ivakin, E.A., Kryukov, Yu.A., and Karafet, T.M., The gene pool of indigenous inhabitants of Samburg Tundra, Genetika (Moscow), 1996, vol. 32, no. 6, pp. 830–836.Google Scholar
  37. Razmkhah, F., Pazhakh, V., Zaker, F., Atashrazm, F., and Sheikhi, M., Frequency of CYP1A1*2C polymorphism in patients with leukemia in the Iranian population, Lab. Med., 2011, vol. 42, no. 4, pp. 220–223. doi 10.1309/LM337JWOSVNEHPUICrossRefGoogle Scholar
  38. Rendic, S. and Guengerich, F.P., Summary of information on the effects of ionizing and non-ionizing radiation on cytochrome P450 and other drug metabolizing enzymes and transporters, Curr. Drug Metab., 2012, vol. 13, no. 6, pp. 787–814. doi 10.2174/138920012800840356CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sam, S.S., Thomas, V., Reddy, K.S., Surianarayanan, G., and Chandrasekaran, A., CYP1A1 polymorphisms and the risk of upper aerodigestive tract cancers in an Indian population, Head Neck, 2008, vol. 30, no. 12, pp. 1566–1574. doi 10.1002/hed.20897CrossRefPubMedGoogle Scholar
  40. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning. A Laboratory Manual, New York: Cold Spring Harbor Laboratory, 1989.Google Scholar
  41. Saprin, A.N., Enzymes of metabolism and detoxification of xenobiotics, Usp. Biol. Khim., 1991, vol. 32, pp. 146–172.Google Scholar
  42. Sevost’yanova, N.V., Nekrasova, A.M., Koshel’, A.P., Dmitrieva, A.I., Martov, S.I., Klokov, S.S., and Rakitin, S.S., Polymorphism of DNA excision repair genes and genes of xenobiotic biotransformation enzymes in gastric cancer patients, Yakutsk. Med. Zh., 2009, vol. 2, no. 26, pp. 111–113.Google Scholar
  43. Shimada, T. and Fujii-Kuriyama, Y., Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1, Cancer Sci., 2004, vol. 95, no. 1, pp. 1–6. doi 10.1111/j.1349-7006.2004.tb03162.xCrossRefPubMedGoogle Scholar
  44. Simchenko, Yu.B., Kul’tura okhotnikov na olenei Severnoi Evrazii (Culture of Deer Hunters in North Eurasia), Moscow: Nauka, 1976.Google Scholar
  45. Sukernik, R.I., Gol’tsova, T.V., Karafet, T.M., Osipova, L.P., and Galaktionov, O.K., Genetic structure of an isolated group of indigenous population of Northern Siberia, Nganasans (Tavgii) Taimyr. Part I. The history of the formation, erythrocyte and serum blood systems, isoenzymes, Genetika (Moscow), 1977, vol. 13, no. 9, pp. 1653–1661.Google Scholar
  46. Sukernik, R.I., Karaphet, T.M., and Osipova, L.P., Distribution of blood groups, serum markers and red cell enzymes in two human populations from Northern Siberia, Hum. Hered., 1978, vol. 28, no. 5, pp. 321–327. doi 10.1159/000152973CrossRefPubMedGoogle Scholar
  47. Taspinar, M., Aydos, S.E., Comez, O., Elhan, A.H., Karabulut, H.G., and Sunguroglu, A., CYP1A1, GSTs gene polymorphisms and risk of chronic myeloid leukaemia, Swiss Med. Wkly., 2008, vol. 138, nos. 1–2, pp. 12–17. 2008/01/smw12036PubMedGoogle Scholar
  48. The 1000 Genomes Project Consortium, An integrated map of genetic variation from 1092 human genomes, Nature, 2012, vol. 491, no. 7422, pp. 56–65. doi 10.1038/nature11632Google Scholar
  49. Wilson, E.B., Probable inference, the law of succession, and statistical inference, J. Am. Stat. Assoc., 1927, vol. 22, no. 158, pp. 209–212. doi 10.2307/2276774CrossRefGoogle Scholar
  50. Xue, K., Xu, L., Chen, S., Ma, G., and Wu, J., Polymorphisms of the CYP1a1 and GSTm1 genes in relation to individual susceptibility to lung carcinoma in Chinese population, Mutat. Res., 2001, vol. 458, nos. 1–2, pp. 41–47. doi 10.1016/S1383-5726(01)00011-5PubMedGoogle Scholar
  51. Zhang, Z., Pelletier, R.D., Wong, Y.N., Sugawara, M., Zhao, N., and Littlefield, B.A., Preferential inducibility of CYP1A1 and CYP1A2 by TCDD: Differential regulation in primary human hepatocytes versus transformed human cells, Biochem. Bioph. Res. Co., 2006, vol. 341, no. 2, pp. 399–407.CrossRefGoogle Scholar
  52. Zhuchenko, N.A., Umnova, N.V., Rumak, V.S., Revazova, Yu.A., Sidorova, I.E., Khripach, L.V., Lazarenko, D.Yu., and Sofronov, G.A., Congenital morphogenetic variations and genetic polymorphisms of the xenobiotic detoxification system in children from dioxin-contaminated areas of South Vietnam, Vestn. Ross. Akad. Med. Nauk, 2006, vol. 7, pp. 3–10.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • R. P. Tiis
    • 1
  • L. P. Osipova
    • 1
    • 2
  • T. V. Churkina
    • 1
  • L. E. Tabikhanova
    • 1
  • D. V. Lichman
    • 1
    • 2
  • E. N. Voronina
    • 2
    • 3
  • M. L. Filipenko
    • 2
    • 3
  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institute of Chemical Biology and Fundamental Medicine, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations