Russian Journal of Genetics: Applied Research

, Volume 6, Issue 6, pp 712–724 | Cite as

Transgenic plants as bioreactors to produce substances for medical and veterinary uses

  • N. V. Saveleva
  • M. S. Burlakovskiy
  • V. V. Yemelyanov
  • L. A. Lutova


The use of plant systems as bioreactors is steadily gaining more significance in modern biotechnology. Many substances including pharmaceuticals can be produced using transgenic plants. The advantages of plants compared to the conventional bioreactors—microorganisms and animal cell cultures—are product safety and lower production costs. One of the promising approaches for the production of plant bioreactors is to create edible vaccines and adjuvants based on the recombinant antigens and immunoregulatory cytokines, which are proposed for use as biological additives in animal husbandry. The research into the production of plant bioreactors synthesizing the γ-interferons of mammals and birds, which possess the antiviral, antibacterial, antitumor, and immunomodulatory activities, are carried out in the Gene and Cell Engineering Laboratory, St. Petersburg State University.


heterologous gene expression plant bioreactors Nicotiana tabacum immunomodulators methods for genetic transformation food and feed additives 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arango, J., Salazar, B., Welsch, R., et al., Putative storage root specific promoters from cassava and yam: Cloning and evaluation in transgenic carrots as a model system, Plant Cell Rep., 2010, vol. 29, pp. 651–659.CrossRefPubMedGoogle Scholar
  2. Arlen, P.A., Falconer, R., Cherukumilli, S., et al., Field production and functional evaluation of chloroplastderived interferon-a2b, Plant Biotechnol. J., 2007, vol. 5, pp. 511–525.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Assenberg, R., Wan, P., Geisse, S., and Mayr, L., Advances in recombinant protein expression for use in pharmaceutical research, Curr. Opin. Struct. Biol., 2013, vol. 23, pp. 393–402.CrossRefPubMedGoogle Scholar
  4. Barta, A., Sommergruber, K., Thompson, D., et al., The expression of a nopalin synthase human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue, Plant. Mol. Biol., 1986, vol. 6, pp. 347–357.CrossRefPubMedGoogle Scholar
  5. Barton, K.A., Binns, A.N., Matzke, A.J., and Chilton, M.D., Regeneration of intact tobacco plants containing full length copies of genetically engineering T-DNA, and transmission of T-DNA to R1 progeny, Cell, 1983, vol. 32, pp. 1033–1043.PubMedGoogle Scholar
  6. Basaran, P. and Rodriguez-Cerezo, E., Plnt molecular farming: Opportunities and challenges, Crit. Rev. Biotechnol., 2008, vol. 28, pp. 153–172.CrossRefPubMedGoogle Scholar
  7. Bosze, Z., Baranyi, M., and Whitelaw, C., Producing recombinant human milk proteins in the milk of livestock species, Adv. Exp. Med. Biol., 2008, vol. 606, pp. 357–393.CrossRefPubMedGoogle Scholar
  8. Boyarintsev, L.E., Development and application of interferon preparations and biologically active additives in veterinary medicine, Doctoral (Vet.) Dissertation, Voronezh, 2003.Google Scholar
  9. Burlakovskiy, M.S., Saveleva, N.V., Yemelyanov, V.V., et al., Production of bovine interferon-gamma in transgenic tobacco plants, Plant Cell Tiss. Organ Cult., 2015, vol. 22, pp. 685–697.CrossRefGoogle Scholar
  10. Chen, T.L., Lin, Y.L., Lee, Y.L., et al., Expression of bioactive human interferon-gamma in transgenic rice cell suspension cultures, Transgenic Res., 2004, vol. 13, pp. 499–510.CrossRefPubMedGoogle Scholar
  11. Chikwamba, R., Cunnick, J., Hathaway, D., et al., A functional antigen in a practical crop: LT-B producing maize protects mice against Escherichia coli heat labile enterotoxin (LT) and cholera toxin (CT), Transgenic Res., 2002, vol. 11, pp. 497–493.CrossRefGoogle Scholar
  12. Chong, D.K.X., Roberts, W., Arakawa, T., et al., Expreßsion of the human milk protein ß-casein in transgenic potato plants, Transgenic Res., 1997, vol. 6, pp. 289–296.CrossRefPubMedGoogle Scholar
  13. Cramer, C.L., Weissenborn, D.L., Oishi, K.K., et al., Bioproduction of human enzymes in transgenic tobacco, Ann N. Y. Acad. Sci., 1996, vol. 792, pp. 62–71.CrossRefPubMedGoogle Scholar
  14. Da Cunha, N.B., Vianna, G.R., Da Almeida, L.T., and Rech, E., Molecular farming of human cytokines and blood products from plants: Challenges in biosynthesis and detection of plant-produced recombinant proteins, Biotechnol. J., 2014, vol. 9, pp. 39–50.CrossRefPubMedGoogle Scholar
  15. Daniel, K., Chong, X., Langridge, W.H.R., et al., Expression of full-length bioactive antimicrobial human lactoferrin in potato plants, Transgenic Res., 2000, vol. 9, pp. 71–78.CrossRefGoogle Scholar
  16. Daniell, H., Ruiz, G., Denes, B., et al., Optimization of codon composition and regulatory elements for expression of human insulin like growth factor-1 in transgenic chloroplasts and evaluation of structural identity and function, BMC Biotechnol., 2009, vol. 9.Google Scholar
  17. De Jaeger, G., De Wilde, C., Eeckhout, D., et al., The plantibody approach: Expression of antibody genes in plants to modulate plant metabolism or to obtain pathogen resistance, Plant. Mol. Biol., 2000, vol. 43, pp. 419–428.CrossRefPubMedGoogle Scholar
  18. Desai, P., Shrivastava, N., and Padh, H., Production of heterologous proteins in plants: Strategies for optimal expression, Biotechnol. Adv., 2010, vol. 28, pp. 427–435.CrossRefPubMedGoogle Scholar
  19. Desai, U.A., Sur, G., Daunert, S., et al., Expression and affinity purification of recombinant proteins from plants, Protein Expr. Purif., 2002, vol. 25, pp. 195–202.CrossRefPubMedGoogle Scholar
  20. Deineko, E.V., Genetically modified plants–bioreactors for synthesis of proteins for medical purposes, Vestn. Tomsk. Gos. Univ., Biol., 2012, no. 18, pp. 41–51.Google Scholar
  21. Dieryck, W., Pagnier, J., Poyart, C., et al., Human haemoglobin from transgenic tobacco, Nature, 1997, vol. 386, pp. 29–30.CrossRefPubMedGoogle Scholar
  22. Edelbaum, O., Stein, D., Holland, N., et al., Expression of active human interferon-beta in transgenic plants, J. Interferon Res., 1992, vol. 12, pp. 449–453.CrossRefPubMedGoogle Scholar
  23. Ershov, V.I., Naglyadnaya gematologiya (Visual Hematology), Ershov, V.I., Ed., Moscow: GEOTAR-Medi, 2008.Google Scholar
  24. Fedorov, Yu.N. and Verkhovskii, O.A., Immunodefitsity domashnikh zhivotnykh (Immunodeficiencies of Domestic Animals), Moscow: Moscow, 1996.Google Scholar
  25. Flynn, J.L., Chan, J., Triebold, K.J., et al., An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection, J. Exp. Med., 1993, vol. 178, pp. 2249–2253.CrossRefPubMedGoogle Scholar
  26. Fukuzawa, N., Tabayashi, N., Okinaka, Y., et al., Production of biologically active atlantic salmon interferon in transgenic potato and rice plants, J. Biosci. Bioeng., 2010, vol. 110, pp. 201–207.CrossRefPubMedGoogle Scholar
  27. Gao, C. and Nielsen, K., Comparison between Agrobacterium- mediated and direct gene transfer using the gene gun, Meth. Mol. Biol., 2013, vol. 940, pp. 3–16.Google Scholar
  28. Gleba, Y., Tuse, D., and Giritch, A., Plant viral vectors for delivery by Agrobacterium, Curr. Top. Microbiol. Immunol., 2014, vol. 375, pp. 155–192.PubMedGoogle Scholar
  29. Gleba, Yu.Yu., Plant biotechnology, Soros. Obraz. Zh., 1998, no. 6, pp. 3–8.Google Scholar
  30. Gradoboeva, A.E. and Padkina, M.V., Analysis of the influence of heterologous protein production on physiological state of yeast Saccharomyces cerevisiae and Pichia pastoris, Vestn. SPbGU, Ser. 3, 2008, no. 2, pp. 56–61.Google Scholar
  31. Hellwig, S., Drossard, J., Twyman, R.M., and Fischer, R., Plant cell cultures for the production of recombinant proteins, Nature Biotechnol., 2004, vol. 22, pp. 1415–1422.CrossRefGoogle Scholar
  32. Herrera-Estrella, L., Depicker, A., van Montagu, M., and Schell, J., Expression of chimeric genes transferred into plant cells using a Ti-plasmid-derived vector, Nature, 1983, vol. 303, pp. 209–213.CrossRefGoogle Scholar
  33. Hiatt, A., Cafferkey, R., and Bowdish, K., Production of antibodies in transgenic plant, Nature, 1989, vol. 342, pp. 76–78.CrossRefPubMedGoogle Scholar
  34. Higo, K., Saito, Y., and Higo, H., Expression of a chemically synthesized gene for human epidermal growth factor under the control of cauliflower mosaic virus 35S promoter in transgenic tobacco, Biosci. Biotechnol. Biochem., 1993, vol. 57, pp. 1477–1481.CrossRefPubMedGoogle Scholar
  35. Hood, E., Witcher, D., Maddock, S., et al., Commercial production of avidin from transgenic maize: Characterization of transformant, production, processing, extraction and purification, Mol. Breed., 1997, vol. 3, pp. 291–306.Google Scholar
  36. Katokhin, A.V., Kuznetsova, T.N., and Omel’yanchuk, N.A., MiRNA as novel regulator of gene activity in eukaryotes, Vestn. Vavilovsk. O-va. Genet. Sel., 2006, vol. 10, pp. 241–272.Google Scholar
  37. Ketlinskii, S.A., Simbirtsev, A.S., and Vorob’ev, A.A., Endogennye immunomodulyatory (Endogenous Immunomodulators), St. Petersburg: Gippokrat, 1992.Google Scholar
  38. Key, S., Ma, J.K.C., and Drake, P.M.W., Genetically modified plants and human health, J. R. Soc. Med., 2008, vol. 101, pp. 290–298.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kim, T.-G. and Yang, M.-S., Current trends in edible vaccine development using transgenic plants, Biotechnol. Bioprocess Eng., 2010, vol. 15, pp. 61–65.CrossRefGoogle Scholar
  40. Kong, Q., Richter, L., Yang, Y.F., et al., Oral immunization with hepatitis B surface antigen expressed in transgenic plants, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 11539–11544.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Koprivova, A., Stemmer, C., Altmann, F., et al., Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans, Plant Biotechnol. J., 2004, vol. 2, pp. 517–523.CrossRefPubMedGoogle Scholar
  42. Lambertz, C., Garvey, M., Klinger, J., et al., Challenges and advances in the heterologous expression of cellulolytic enzymes: A review, Biotechnol. Biofuels, 2014, vol. 7.Google Scholar
  43. Lamphear, B.J., Jilka, J.M., Kesl, L., et al., A corn-based delivery system for animal vaccines: An oral transmissible gastroenteritis virus vaccine boosts lactogenic immunity in swine, Vaccine, 2004, vol. 22, pp. 2420–2424.CrossRefPubMedGoogle Scholar
  44. Larrick, J.W., Yu, L., Naftzger, C., et al., Production of secretory IgA antibodies in plants, Biomol. Eng., 2001, vol. 18, pp. 87–94.CrossRefPubMedGoogle Scholar
  45. Luchakivskaya, Yu., Kishchenko, O., Gerasymenko, I., et al., High-level expression of human interferon alpha-2b in transgenic carrot (Daucus carota L.) plants, Plant Cell Rep., 2011, vol. 30, pp. 407–415.CrossRefPubMedGoogle Scholar
  46. Lutova, L.A., Biotekhnologiya vysshikh rastenii (Higher Plant Biotechnology), St. Petersburg: SPbGU, 2010, 2nd ed.Google Scholar
  47. Ma, J.K., Drake, P.M., and Christou, P., The production of recombinant pharmaceutical proteins in plants, Nat. Rev. Genet., 2003, vol. 4, pp. 794–805.CrossRefPubMedGoogle Scholar
  48. Mason, H.S., Lam, D.M., and Arntzen, C.J., Expression of hepatitis B surface antigen in transgenic plants, Proc. Natl. Acad. Sci. U.S.A., 1992, vol. 89, pp. 11745–11749.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Matsumoto, S., Ikura, K., Ueda, M., and Sasaki, R., Characterization of a human glycoprotein (erythropoietin) produced in cultured tobacco cells, Plant. Mol. Biol., 1995, vol. 27, pp. 1163–1172.CrossRefPubMedGoogle Scholar
  50. McCormick, A.A., Kumagai, M.H., Hanley, K., et al., Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, pp. 703–708.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Merle, C., Perret, S., Lacour, T., et al., Hydroxylated human homotrimeric collagen I in Agrobacterium tumefaciens-mediated transient expression and in transgenic tobacco plant, FEBS Lett., 2002, vol. 515, pp. 114–118.CrossRefPubMedGoogle Scholar
  52. Miroshnikov, P.N., Lebedev, L.R., Tereshchenko, T.A., et al., The elaboration of methods for the preparation of interferon-gamma and its mutant counterpart deltaferon), Biotekhnol., Sostoyanie Perspekt. Razvit., 2003, vol. 152, pp. 78–82.Google Scholar
  53. Noh, S.A., Lee, H.S., Huh, G.H., et al., A sweetpotato SRD1 promoter confers strong root-, taproot-, and tuberspecific expression in Arabidopsis, carrot, and potato, Transgenic Res., 2012, vol. 21, pp. 265–278.CrossRefPubMedGoogle Scholar
  54. Nykiforuk, C.L., Boothe, J.G., Murray, E.W., et al., Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds, Plant Biotechnol. J., 2006, vol. 4, pp. 77–85.CrossRefPubMedGoogle Scholar
  55. Obembe, O.O., Popoola, J.O., Leelavathti, S., and Reddy, S.V., Advances in plant molecular farming, Biotechnol. Adv., 2011, vol. 29, pp. 210–222.CrossRefPubMedGoogle Scholar
  56. Oksman-Caldentey, K.-M. and Inze, D., Plant cell factories in the post-genomic era: New ways to produce designer secondary metabolites, Trends Plant Sci., 2004, vol. 9, pp. 433–440.CrossRefPubMedGoogle Scholar
  57. Padkina, M.V., Parfenova, L.V., Gradoboeva, A.E., and Sambuk, E.V., Heterologous interferons synthesis in yeast Pichia pastoris, Appl. Biochem. Microbiol., 2010, vol. 46, pp. 409–414.CrossRefGoogle Scholar
  58. Parmenter, D.L., Boothe, J.G., van Rooijen, G.J.H., et al., Production of biologically active hirudin in plant seeds using oleosin partitioning, Plant. Mol. Biol., 1995, vol. 29, pp. 1167–1180.CrossRefPubMedGoogle Scholar
  59. Pestka, S., Langer, J.A., Zoon, K.C., and Samuel, C.E., Interferons and their actions, Annu. Rev. Biochem., 1987, vol. 56, pp. 727–777.CrossRefPubMedGoogle Scholar
  60. Potula, H.H.S.K., Kathuria, S.R., Ghosh, A.K., et al., Transient expression, purification and characterization of bioactive human fibroblast growth factor 8b in tobacco plants, Transgenic Res., 2008, vol. 17, pp. 19–32.PubMedGoogle Scholar
  61. Pridybailo, N.D., Immunodefitsity u sel’skokhozyaistvennykh zhivotnykh i ptits. Profilaktika i lechenie ikh immunostimulyatorami (Immunodeficiencies in Cattle and Poultry. Prophylaxis and Therapy by Immunostimulators), Moscow: VASKhNIL, 1991.Google Scholar
  62. Rance, I., Norre, F., Gruber, V., and Theisen, M., Combination of viral promoter sequences to generate highly active promoters for heterologous therapeutic protein over-expression in plants, Plant Sci., 2002, vol. 162, pp. 833–842.CrossRefGoogle Scholar
  63. Richter, L.J., Thanavala, Y., Arntzen, C.J., and Mason, H.S., Production of hepatitis B surface antigen in transgenic plants for oral immunization, Nat. Biotechnol., 2000, vol. 18, pp. 1167–1171.CrossRefPubMedGoogle Scholar
  64. Ruggiero, F., Exposito, J.Y., Bournat, P., et al., Triple helix assebly and processing of human collagen produced in transgenic tobacco plants, FEBS Lett., 2000, vol. 469, pp. 132–136.CrossRefPubMedGoogle Scholar
  65. Rukavtsova, E.B., Bur’yanov, Ya.I., Shul’ga, N.Ya., and Bykov, V.A., Transgenic plants for pharmacology, Vopr. Biol. Med. Farm. Khim., 2006, no. 2, pp. 3–12.Google Scholar
  66. Savel’eva, N.V., Kurdyukov, I.D., Dudnik, E.E., et al., Bioreactor plants for synthesis of bovine interferongamma for prophylaxis of cattle tuberculosis and leukemia, Vestn. S.-Peterb. Univ., Ser. 3, 2009, no. 4, pp. 65–80.Google Scholar
  67. Savel’eva, N.V. and Lutova, L.A., Rasteniya–produtsenty rekombinantnykh belkov meditsinskogo naznacheniya. Produtsenty interferona byka (Bioreactor Plants for Synthesis of Recombinant Proteins of Medicinal Use. Production of Bovine γ-interferon), Saarbrücken: LAPLAMBERT Academic Publishing, 2010.Google Scholar
  68. Scheller, J., Henggeler, D., Viviani, A., and Conrad, U., Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation, Transgenic Res., 2004, vol. 13, pp. 51–57.CrossRefPubMedGoogle Scholar
  69. Schroder, K., Hertzog, P.J., Ravasi, T., and Hume, D.A., Interferon-gamma: An overview of signals, mechanisms and functions, J. Leukocyte Biol., 2004, vol. 75, pp. 163–189.CrossRefPubMedGoogle Scholar
  70. Shaaltiel, Y., Bartfeld, D., Hashmueli, S., et al., Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using plant cell system, Plant Biotechnol. J., 2007, vol. 5, pp. 579–590.CrossRefPubMedGoogle Scholar
  71. Sharma, A.K. and Sharma, M.K., Plants as bioreactors: Recent developments and emerging opportunities, Biotechnol. Adv., 2009, vol. 27, pp. 811–832.CrossRefPubMedGoogle Scholar
  72. Shulga, N.Ya., Rukavtsova, E.B., Krymskyi, M.A., et al., Expression and characterization of hepatitis B surface antigen in transgenic potato plants, Biochemistry (Moscow), 2004, vol. 69, no. 10, pp. 1158–1164.CrossRefGoogle Scholar
  73. Sijmons, P.C., Dekker, B.M., Schrammeijer, B., et al., Production of correctly processed human serum albumin in transgenic plants, Biotechnology (New York), 1990, vol. 8, pp. 217–221.CrossRefGoogle Scholar
  74. Simbirtsev, A.S., Achievements and prospects for the use of recombinant cytokines in clinical practice, Med. Akad. Zh., 2013, vol. 13, pp. 7–22.Google Scholar
  75. Sirko, A., Vanek, T., Gora-Sochacka, A., and Redkiewicz, P., Recombinant cytokines from plants, Int. J. Mol. Sci., 2011, vol. 12, pp. 3536–3552.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Smith, M.L., Mason, H.S., and Shuler, M.L., Hepatitis B surface antigen (HBsAg) expression in plant cell culture: Kinetics of antigen accumulation in batch culture and its intracellular form, Biotechnol. Bioeng., 2002, vol. 80, pp. 812–822.CrossRefPubMedGoogle Scholar
  77. Staniek, A., Bouwmeester, H., Fraser, P.D., et al., Natural products–modifying metabolite pathways in plants, Biotechnol. J., 2013, vol. 8, pp. 1159–1171.CrossRefPubMedGoogle Scholar
  78. Stiles, A. and Liu, C., Hairy root culture: Bioreactor design and process intensification, Adv. Biochem. Eng. Biotechnol., 2013, vol. 134, pp. 91–114.PubMedGoogle Scholar
  79. Stoger, E., Vaquero, C., Torres, E., et al., Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies, Plant Mol. Biol., 2000, vol. 42, pp. 583–590.CrossRefPubMedGoogle Scholar
  80. Tacket, C.O., Mason, H.S., Losonsky, G., et al., Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato, Nat. Med., 1998, vol. 4, pp. 607–609.CrossRefPubMedGoogle Scholar
  81. Tacket, C.O., Mason, H.S., Losonsky, G., et al., Human immune responses to a novel norwalk virus vaccine delivered in transgenic potatoes, J. Infect. Dis., 2000, vol. 182, pp. 302–305.CrossRefPubMedGoogle Scholar
  82. Terashima, M., Murai, Y., Kawamura, M., et al., Production of functional human a1-antitrypsin by plant cell culture, Appl. Microbiol. Biotechnol., 1999, vol. 52, pp. 516–523.CrossRefPubMedGoogle Scholar
  83. Thanavala, Y., Mahoney, M., Pal, S., et al., Immunogenicity in humans of an edible vaccine for hepatitis B, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, pp. 3378–3382.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Thanavala, Y., Yang, Y.F., Lyons, P., et al., Immunogenicity of transgenic plant-derived hepatitis B surface antigen, Proc. Natl. Acad. Sci. U.S.A., 1995, vol. 92, pp. 3358–3361.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Thomas, B.R., Deynze, A.V., and Bradford, K.J., Production of Therapeutic Proteins in Plants. Agricultural Biothechnology in California Series, 2002.Google Scholar
  86. Trexler, M.M., McDonald, K.A., and Jackman, A.P., Bioreactor production of human 1-antitrypsin using metabolically regulated plant cell cultures, Biotechnol. Prog., 2002, vol. 18, pp. 501–508.CrossRefPubMedGoogle Scholar
  87. Trimble, R.B., Atkinson, P.H., Tschopp, R.R., and Maley, F., Structure of oligosaccharides on Saccharomyces SUC2 invertase secreted by the methylotrophic yeast Pichia pastoris, J. Biol. Chem., 1991, vol. 266, pp. 22807–22817.PubMedGoogle Scholar
  88. Tsygankov, M.A., Zobnina, A.E., and Padkina, M.V., Synthesis of recombinant gamma interferons resistant to proteolysis in the yeast Pichia pastoris, Appl. Biochem. Microbiol., 2014, vol. 50, pp. 387–393.CrossRefGoogle Scholar
  89. Vandekerckhove, J., Van Damme, J., Van Lijsebettens, M., et al., Enkephalins produced in transgenic plants using modified 2S seed storage proteins, Biotechnol., 1989, vol. 7, pp. 929–932.CrossRefGoogle Scholar
  90. Veluthambi, K., Jayaswal, R.K., and Gelvin, S.B., Virulence genes A,G,and D mediate the double-stranded border cleavage of T-DNA from the Agrobacterium Ti plasmid, Proc. Natl. Acad. Sci. U.S.A., 1987, vol. 84, pp. 1881–1885.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Vesovsky, B., Turner, O.C., Turner, J., and Orme, I.M., Gamma interferon production by bovine gamma delta T cells following stimulation with mycobacterial mycolylarabinogalactan peptidoglycan, Infect. Immun., 2004, vol. 72, pp. 4612–4618.CrossRefGoogle Scholar
  92. Weise, A., Altmann, F., Rodriguez-Franco, M., et al., High-level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella fuc-t-xyl-t mutant, Plant Biotechnol. J., 2007, vol. 5, pp. 389–401.CrossRefPubMedGoogle Scholar
  93. Woodard, S.L., Mayor, J.M., Bailey, M.R., et al., Maize (Zea mays)-derived bovine trypsin: Characterization of the first large-scale, commercial protein product from transgenic plants, Biotechnol. Appl. Biochem., 2003, vol. 38, pp. 123–130.PubMedGoogle Scholar
  94. Yang, D.C., Guo, F.L., Liu, B., et al., Expression and localization of human lysozyme in the endosperm of transgenic rice, Planta, 2003, vol. 216, pp. 597–603.PubMedGoogle Scholar
  95. Yu, J. and Langridge, W.H., A plant-based multicomponent vaccine protects mice from enteric diseases, Nat. Biotechnol., 2001, vol. 19, pp. 548–552.CrossRefPubMedGoogle Scholar
  96. Zeitlin, L., Olmsted, S.S., Moench, T.R., et al., A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes, Nat. Biotechnol., 1998, vol. 16, pp. 1361–1364.CrossRefPubMedGoogle Scholar
  97. Zhong, G.-Y., Peterson, D., Delaney, D.E., et al., Commercial production of aprotinin in transgenic maize seeds, Mol. Breed., 1999, vol. 36, pp. 345–356.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. V. Saveleva
    • 1
  • M. S. Burlakovskiy
    • 2
  • V. V. Yemelyanov
    • 2
  • L. A. Lutova
    • 2
  1. 1.Lab. UMR 1136 Interactions of Plant/Micro-organismsINRAChampenouxFrance
  2. 2.Dept. of Genetics and BiotechnologySt. Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations