Prospects of the use of wild relatives for pea breeding

  • O. E. KosterinEmail author


The current global climate change results in shift and shrinkage of ranges of crop cultivation. The potential of crop wild relatives as an important source of genetic diversity for breeding is underestimated. Wild relatives of pea include the species P. fulvum and the subspecies P. sativum subsp. elatius, whereas wild representatives of P. abyssinicum are unknown. Wild peas are characterized by spontaneous dehiscence of pods and ballistic seed dispersal. The cultivated pea represents just a phyletic lineage within P. sativum. Pea crop wild relatives are promising with respect to: (1) resistance to pests and pathogens; (2) resistance to abiotic stress; (3) nutritional value; (4) agrotechnical advantages, e.g. branching, ability of hibernation etc.; (5) symbiotic nitrogen fixation; etc. P. fulvum is resistant to pea weevil, rust, powdery mildew and ascochyta blight. Some P. sativum subsp. elatius are resistant to nematodes, broomrape, powdery mildew, Fusarium wilt, root rot, ascochyta blight and white wilt. P. sativum subsp. elatius responds to weevil oviposition by neoplastic pustules of the pod wall controlled by the locus Np. Some P. sativum subsp. elatius accessions have lowered transpiration rates, and an accession from Italy survives at–20°C. Analyses of quantitative trait loci have been carried out for resistance of P. fulvum to pea weevil, powdery mildew and rust and for resistance of P. sativum subsp. elatius to broomrape, bacterial blight and ascochyta blight. Aryamanesh et al. (2012) obtained five introgression lines with pea weevil resistance transferred from P. fulvum to P. sativum. The practical use of wild peas is hampered by insufficient awareness of their diversity and differences from cultivated peas. Studies of useful traits of wild peas and their natural diversity, which is rapidly vanishing, should be intensified.


Pisum sativum Pisum sativum subsp. elatius Pisum fulvum Pisum abyssinicum pea crop wild relaives resistance to pathogens resistance to pests QTL analysis breeding prebreeding genetic diversity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbo, S., Lev-Yadun, S., and Gopher, A., Plant domestication and crop evolution in the Near East: On events and process, Crit. Rev. Plant. Sci., 2012, vol. 31, p. 241–257.CrossRefGoogle Scholar
  2. Abbo, S., Lev-Yadun, S., Heun, M., and Gopher, A., On the “lost crops” of the neolithic Near East, J. Exp. Bot., 2013, vol. 64, 815–822.CrossRefGoogle Scholar
  3. Abbo, S., Lev-Yadun, S., and Gopher, A., Agricultural origins: Centres and noncentres; a Near Eastern reappraisal, Crit. Rev. Plant. Sci., 2010, vol. 29, pp. 317–328.CrossRefGoogle Scholar
  4. Abbo, S., Lev-Yadun, S., and Gopher, A., Origin of Near Eastern plant domestication: Homage to Claude LeviStrauss and “La Penseaé Sauvage”, Genet. Res. Crop. Evol., 2011, vol. 58, pp. 175–179.CrossRefGoogle Scholar
  5. Ali, S.M., Sharma, B., and Ambrose, M.J., Current status and future strategy in breeding pea to improve resistance to biotic and abiotic stresses, Euphytica, 1994, vol. 73, pp. 115–126.CrossRefGoogle Scholar
  6. Allaby, R.G., Fuller, D.Q., and Brown, T.A., The genetic expectation of the protracted model of the origin of domesticated crops, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 13982–13986.CrossRefGoogle Scholar
  7. Aryamanesh, N., Zeng, Y., Byrne, O., Hardie, D.C., AlSubhi, A.M., Khan, T., Siddique, K.H.M., and Yan, G., Identification of genome regions controlling cotyledon, pod wall/seed coat and pod wall resistance to pea weevil through QTL mapping, Theor. Appl. Genet., 2014, vol. 127, pp. 489–497.CrossRefGoogle Scholar
  8. Aryamanesh, N., Byrne, O., Hardie, D.C., Khan, T., Siddique, K.H.M., and Yan, G., Large-scale densitybased screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea (Pisum sativum) and Pisum fulvum, Crop Pasture Sci., 2012, vol. 63, 612–618.CrossRefGoogle Scholar
  9. Asouti, E. and Fuller, D.Q., From foraging to farming in the southern Levant: The development of the Epipaleolithic and Pre-pottery Neolithic plant managing strategies, Veg. History Archaeobot., 2012, vol. 21, pp. 149–162.CrossRefGoogle Scholar
  10. Baranger, A.G., Aubert, G., Arnau, G., Lainé, A.L., Deniot, G., Potier J., Weinachter, C., Lejeune-Hénaut, I., Lallemand, J., and Burstin, J., Genetic diversity within Pisum sativum using protein and PCR based markers, Theor. Appl. Genet., 2004, no. 108, pp. 1309–1321.CrossRefGoogle Scholar
  11. Barilli, E., Sillero, J.C., Moral, A., and Rubiales, D., Characterization of resistance response of pea (Pisum spp.) against rust (Uromyces pisi), Plant Breed., 2009, vol. 128, pp. 665–670.CrossRefGoogle Scholar
  12. Barilli, E., Satovic, Z., Rubiales, D., and Torres, A.M., Mapping of quantitative trait loci controlling partial resistance against rust incited by Uromyces pisi (Pers.) Wint. in a Pisum fulvum L. intraspecific cross, Euphytica, 2010, vol. 175, pp. 151–159.Google Scholar
  13. Bastianelli, D., Grosjean, F., Peyronnet, C., Duparque, M., and Regnier, J.M., Feeding value of pea (Pisum sativum L.), Chemical composition of different categories of pea, Anim. Sci., 1998, vol. 67, pp. 609–619.Google Scholar
  14. Ben-Ze’ev, N. and Zohary, D., Species relationship in the genus Pisum L., Israel J. Bot., 1973, vol. 22, pp. 73–91.Google Scholar
  15. Berdnikov, V.A., Trusov, Y.A., Bogdanova, V.S., Kosterin, O.E., Rozov, S.M., Nedel’kina, S.V., and Nikulina, Y.N., The neoplastic pod gene (Np) may be a factor of resistance to the pest Bruchus pisorum L., Pisum Genet., 1992, vol. 24, pp. 37–39.Google Scholar
  16. Bogdanova, V.S. and Galieva, E.R., Meiotic abnormalities as expression of nuclear-cytoplasmic incompatibility in crosses of Pisum sativum subspecies, Russ. J. Genet., vol. 45, pp. 623–627.Google Scholar
  17. Bogdanova, V.S., Galieva, E.R., Yadrikhinskiy, A.K., and Kosterin, O.E., Inheritance and genetic mapping of two nuclear genes involved in nuclear-cytoplasmic incompatibility in peas (Pisum sativum L.), Theor. Appl. Genet., 2012, vol. 124, pp. 1503–1512.CrossRefGoogle Scholar
  18. Bogdanova, V.S., Kosterin, O.E., and Yadrikhinskiy, A.K., Wild peas vary in their cross-compatibility with cultivated pea (Pisum sativum subsp. sativum L.) depending on alleles of a nuclear-cytoplasmic incompatibility locus, Theor. Appl. Genet., 2014, no. 127, pp. 1163–1172.PubMedGoogle Scholar
  19. Borisov, A.Yu., Shtark, O.Yu., Zhukov, V.A., Nemankin, T.A., Naumkina, T.S., Pinaev, A.G., Akhtemova, G.A., Voroshilova, V.A., Ovchinnikova, E.S., Rychagova, T.S., Tsyganov, V.E., Zhernakov, A.I., Kuznetsova, E.V., and Grishina, O.A., Interaction of legumes with beneficial soil microorganisms: From genes to varieties, Agric. Biol., 2011, no. 3, pp. 41–47.Google Scholar
  20. Brown, T.A., Jones, M.K., Powell, W., and Allaby, R.G., The complex origins of domesticated crops in the Fertile Crescent, Trends Ecol. Evol., 2009, no. 24, pp. 103–109.PubMedCrossRefGoogle Scholar
  21. Byrne, O.M., Hardie, D.C., Khan, T.N., and Yan, G., Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum × P. fulvum interspecific cross., Aust. J. Agric. Res., 2008, no. 59, pp. 854–862.CrossRefGoogle Scholar
  22. Carrillo, E. and Rubiales, D., Pérez-de-Luque, A., and Fondevilla, S., Characterization of mechanisms of resistance against Didymella pinodes in Pisum spp., Eur. J. Plant Pathol., 2013, vol. 135, no. 761–769.CrossRefGoogle Scholar
  23. Carrillo, E., Satovic, Z., Aubert, G., Boucherot, K., Rubiales, D., and Fondevilla, S., Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea, Plant Cell Rep., 2014, no. 33, pp. 1133–1345.PubMedCrossRefGoogle Scholar
  24. Clement, S.L., Hardie, D.C., and Elberson, L.R., Variation among accessions of Pisum fulvum for resistance to pea weevil, Crop Sci., 2002, vol. 42, pp. 2167–2173.CrossRefGoogle Scholar
  25. Clement, S.L., McPhee, K.E., Elberson, L.R., and Evans, M.A., Pea weevil, Bruchus pisorum L. (Coleoptera: Bruchidae), resistance in Pisum sativum × Pisum fulvum interspecific crosses, Plant Breed., 2009, no. 128, pp. 478–485.CrossRefGoogle Scholar
  26. Conicella, C. and Errico, A., Karyotpe variations in Pisum sativum ect. abyssinicum, Caryologia, 1990, vol. 43, pp. 87–97.CrossRefGoogle Scholar
  27. Cooper, L.D., Doss, R.P., Price, R., Peterson, K., and Oliver, J.E., Application of Bruchin B to pea pods results in the up-regulation of CYP93C18, a putative isoflavone synthase gene, and an increase in the level of pisatin, an isoflavone phytoalexin, J. Exp. Bot., 2005, vol. 56, pp. 1229–1237.PubMedCrossRefGoogle Scholar
  28. Coyne, C.J., McClendon, M.T., Walling, J.G., Timmerman-Vaughan, G.M., Murray, S., Meksem, K., Lightfoot, D.A., Shultz, J.L., Keller, K.E., Martin, R.R., Inglis, D.A., Rajesh, P.N., McPhee, K.E., Weeden, and N.F., Grusak, Construction and characterization of two bacterial artificial chromosome libraries of pea (Pisum sativum L.) for the isolation of economically important genes, Genome, 2007, vol. 50, pp. 871–875.PubMedCrossRefGoogle Scholar
  29. Coyne, C.J., McGee, R.J., Redden, R.J., Ambrose, M.J., Furman, B.J., and Miles, C.A., Genetic adjustment to changing climates: Pea, in Crop Adaptation to Climate Change, Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., and Hall, A.E., Eds., Oxford: Wiley-Blackwell, 2011, pp. 238–250.Google Scholar
  30. Davis, H., Materials for a flora of Turkey. XIX. Leguminosae: Vicieae, Notes Roy. Bot. Garden Edinburgh, 1969, vol. 29, pp. 311–320.Google Scholar
  31. Davis, H., Flora of Turkey and the East Aegean Islands, Edinbourgh, 1970, vol. 3.Google Scholar
  32. Domoney, C., Casey, R., Turner, L., and Ellis, N., Pisum lipoxygenase genes, Theor. Appl. Genet., 1991, vol. 81, pp. 800–805.PubMedCrossRefGoogle Scholar
  33. Doss, R.P., Oliver, J.E., Proebsting, W.M., Potter, S.W., Kuy, S., Clement, S.L., Williamson, T., Carney, J.R., and DeVilbiss, E.D., Bruchins: Insect-derived plant regulators that stimulate neoplasm formation, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 6218–6233.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Doss, R.P., Oliver, J.E., Proebsting, W.M., Potter, S.W., Kuy, S., Clement, S.L., Williamson, T., Carney, J.R., and DeVilbiss, E.D., Bruchins: Insect-derived plant regulators that stimulate neoplasm formation, Proc. Natl Acad. Sci. U.S.A., 2000, vol. 97, pp. 6218–6223.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ellis, T.H.N., Poyser, S.J., Knox, M.R., Vershinin, A.V., and Ambrose, M.J., Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea, Mol. General Genet., 1998, vol. 260, pp. 9–19.Google Scholar
  36. Errico, A., Conicella, C., and Venora, G., Karyotype studies on Pisum fulvum and Pisum sativum using a chromosome image analysis system, Genome, 1991, vol. 34, pp. 105–108.CrossRefGoogle Scholar
  37. Fondevilla, S., Martín-Sanz, A., Satovic, Z., FernándezRomero, M.D., Rubiales, D., and Caminero, C., Identification of quantitative trait loci involved in resistance to Pseudomonas syringae pv syringae in pea (Pisum sativum L.), Euphytica, 2012, vol. 186, p. 805–812.CrossRefGoogle Scholar
  38. Fondevilla, S., Cubero, J.I., and Rubiales, D., Confirmation that the Er3 gene, conferring resistance to Erysiphe pisi in pea, is a different gene from er1 and er2 genes, Plant Breed., 2010, vol. 130, pp. 281–282.Google Scholar
  39. Fondevilla, S., Satovic, Z., Rubiales, D., Moreno, M.T., and Torres, A.M., Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp syriacum, Mol. Breed., 2008, vol. 21, pp. 439–454.CrossRefGoogle Scholar
  40. Fondevilla, S., Torres, A.M., Moreno, M.T., and Rubiales, D., Identification of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea, Breed. Sci., 2007b, vol. 57, pp. 181–184.CrossRefGoogle Scholar
  41. Fondevilla, S., Cubero, J.I., and Rubiales, D., Inheritance of resistance to Mycosphaerella pinodes in two wild accessions of Pisum, in Ascochyta blights of grain legumes, Tivoli, B., Baranger, A., Muehlbauer, F.J., and Cooke, B.M., Eds., Springer, 2007a, pp. 53–58.CrossRefGoogle Scholar
  42. Fondevilla, S., Almeida, N.F., Satovic, Z., Rubiales, D., Patto, M.C.V., Cubero, J.I., and Torres, A.M., Identification of common genomic regions controlling resistance to Mycosphaerella pinodes, earliness and architectural traits in different pea genetic backgrounds, Euphytica, 2011, vol. 182, pp. 43–52.Google Scholar
  43. Fondevilla, S., Ávila C.M., Cubero J.I., and Rubiales, D., Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp., Plant Breed., 2005, vol. 124, pp. 313–315.CrossRefGoogle Scholar
  44. Ford-Lloyd, B.V., Schmidt, M., Armstrong, S.J., Barazani, O., Engels, J., Hadas, R., Hammer, K., Kell, S.P., Kang, D., Khoshbakht, K., Li, Y., Long, C., Lu, B.-R., Ma, K., and Nguyen, V.T., Crop wild relatives–undervalued, underutilized and under threat? BioScience, 2011, vol. 61, pp. 559–565.Google Scholar
  45. Fuller, D.Q., Contrasting pattern of crop domestication and domestication rates: Recent archaeological insights from the Old World, Ann. Bot., 2007, vol. 100, pp. 903–924.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fuller, D.Q., Willcox, G., and Allaby, R.G., Cultivation and domestication had multiple origins: Arguments against the core area hypothesis for the origins of agriculture in the Near East, World Archaeol., 2011, vol. 43, pp. 628–658.CrossRefGoogle Scholar
  47. Fuller, D.Q., Willcox, G., and Allaby, R.G., Early agricultural pathways: Moving outside the ‘core area’ hypothesis in Southwest Asia, J. Exp. Bot., 2012, vol. 63, pp. 617–633.PubMedCrossRefGoogle Scholar
  48. Geurts, R., Heidstra, R., Hadri, A.E., Downie, J.A., Franssen, H., van Kammen, A.B., and Bisseling, T., Sym2 of pea is involved in a nodulation factor-perception mechanism that controls the infection process in the epidermis, Plant Physiol., 1997, vol. 115, pp. 351–359.PubMedPubMedCentralGoogle Scholar
  49. Glémin, S. and Battailon, T., A comparative view of the evolution of grasses under domestication, New Phytol., 2012, vol. 183, pp. 273–290.CrossRefGoogle Scholar
  50. Goncharov, N.P., Nikolay Ivanovich Vavilov, Novosibirsk: SO RAN, 2014.Google Scholar
  51. Goncharov, N.P., Glushkov, S.A., and Shumny, V.K., Domestication of cereal crops in the Old World: In search of a new approach to solving old problem, Zh. Obshch. Biol., 2007, vol. 68, no. 2, pp. 126–148.PubMedGoogle Scholar
  52. Gopher, A., Abbo, S., and Lev-Yadun, S., The “when”, the ‘where’ and the ‘why’ of the Neolithic revolution in the Levant, Documenta Praehistorica, 2001, vol. 27, pp. 49–62.Google Scholar
  53. Govorov, L.I., Cultivated Flora of the USSR, Moscow–Leningrad: Gos. Izd. Sovkhoz. Kolkhoz. Lit., 1937, vol. 4, pp. 229–336.Google Scholar
  54. Govorov, L.I., Pea of Afghanistan (on the problem of the origin of the cultivated pea), Bull. Appl. Bot., Genet. Plant Breed., 1928, vol. 19, pp. 497–522.Google Scholar
  55. Hammer, K., The domestication syndrome, Kulturpflanze, 1984, vol. 32, pp. 11–34.CrossRefGoogle Scholar
  56. Hance, S.T., Grey, W., and Weeden, N.F., Identification of tolerance to Fusarium solani in Pisum sativum ssp. elatius, Pisum Genetics, 2004, vol. 36, pp. 9–13.Google Scholar
  57. Harlan, J.R., Agricultural origin: Centres and noncentres, Science, 1971, vol. 174, pp. 468–474.PubMedCrossRefGoogle Scholar
  58. Hatfield, J.L., Changing climate in North America: Implications for crops, in Crop Adaptation to Climate Change, Yadav, S.S., Redden, R.J., Hatfield, J.L., LotzeCampen, H., and Hall, A.E., Eds., Oxford: WileyBlackwell, 2011, pp. 57–65.CrossRefGoogle Scholar
  59. Heng, L., Vincken, J.P., van Koningsveld, G., Legger, A., Gruppen, H., van Boekel, T., Roozen, J., and Voragen, F., Bitterness of saponins and their content in dry peas, J. Sci. Food Agric., 2006, vol. 86, pp. 1225–1231.CrossRefGoogle Scholar
  60. Hoey, B.K., Crowe, K.R., Jones, V.M., and Polans, N.O., A phylogenetic analysis of Pisum based on morphological characters, and allozyme and RAPD markers, Theor. Appl. Genet., 1996, vol. 92, pp. 92–100.PubMedCrossRefGoogle Scholar
  61. Jing, R., Johnson, R., Seres, A., Kiss, G., Ambrose, M.J., Knox, M.R., Ellis, T.H.N., and Flavell, A.J., Genebased sequence diversity analysis of field pea (Pisum), Genetics, 2007, vol. 177, pp. 2263–2275.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jing, R., Vershinin, A., Grzebota, J., Shaw, P., Smýkal, P., Marshall, D., Ambrose, M.J., Ellis, T.H.N., and Flavell, A.J., The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis, BMC Evol. Biol., 2010, vol. 10, art. 44.Google Scholar
  63. Kneen, B.E. and LaRue, T.A., Peas (Pisum sativum L.) with strain specificity to Rhizobium leguminosarum, Heredity, 1984, no. 52, pp. 383–389.CrossRefGoogle Scholar
  64. Kosterin, O.E. and Bogdanova, V.S., Reciprocal compatibility within the genus Pisum L. as studied in F1 hybrids: 1. Crosses involving P. sativum L. subsp. sativum, Genet. Res. Crop Evol., 2014. doi 10.1007/s10722014-0189zGoogle Scholar
  65. Kosterin, O.E., Zaytseva, O.O., Bogdanova, V.S., and Ambrose, M., New data on three molecular markers from different cellular genomes in Mediterranean accessions reveal new insights into phylogeography of Pisum sativum L. subsp. elatuis (Beib.) Schmahl, Genet. Res. Crop Evol., 2010, vol. 57, pp. 733–739.CrossRefGoogle Scholar
  66. Kosterin, O.E. and Bogdanova, V.S., Relationship of wild and cultivated forms of Pisum L. as inferred from an analysis of three markers, of the plastid, mitochondrial and nuclear genomes, Genet. Res. Crop Evol., 2008, vol. 55, pp. 735–755.CrossRefGoogle Scholar
  67. Ladizinsky, G., Seed dispersal in relation to domestication of Middle East legumes, Econ. Bot., 1979, vol. 33, pp. 284–289.CrossRefGoogle Scholar
  68. Lamm, R., Cytogenetical studies on translocations in Pisum, Hereditas, 1951, vol. 37, pp. 356–372.CrossRefGoogle Scholar
  69. Lev-Yadun, S., Gopher, A., and Abbo, S., The cradle of agriculture, Science, 2000, vol. 288, pp. 1602–1603.PubMedCrossRefGoogle Scholar
  70. Lie, T.A., Symbiotic nitrogen fixation under stress conditions, Plant Soil, 1971, spec. vol., pp. 117–127.Google Scholar
  71. Lie, T.A., Symbiotic specialization in pea plants: The requirement of specific Rhizobium strains for peas from Afghanistan, Ann. Appl. Biol., 1978, vol. 88, pp. 462–465.CrossRefGoogle Scholar
  72. Lie, T.A., Göktan, D., Engin, M., Pijnenborg, J., and Anlarsal, E., Co-evolution of the legume-Rhizobium association, Plant Soil, 1987, vol. 100, pp. 171–181.CrossRefGoogle Scholar
  73. Lie, T.A., Host genes in Pisum sativum conferring resistance to European Rhizobium leguminosarum strains, Plant Soil, 1984, vol. 82, pp. 415–425.CrossRefGoogle Scholar
  74. Lie, T.A., Gene centres, a source for genetic variants in symbiotic nitrogen fixation: Host induced ineffectivity in Pisum sativum ecotype fulvum, Plant Soil, 1981, vol. 61, pp. 125–134.Google Scholar
  75. Lobell, D.B. and Field, C.B., Global scale climate–crop yield relationships and the impacts of recent warming, Environ. Res. Lett., 2007, vol. 2, art. 014002.CrossRefGoogle Scholar
  76. Lu, J., Knox, M.R., Ambrose, M.J., Brown, J.K.M., and Ellis, T.H.N., Comparative analysis of genetic diversity in pea assessed by RFLPand PCR-based methods, Theor. Appl. Genet., 1996, vol. 93, pp. 1103–1111.PubMedCrossRefGoogle Scholar
  77. Makasheva, R.Kh., Pea, Cultivated Flora of the USSR, 1979, Leningrad: Kolos, vol. 4, part 1.Google Scholar
  78. Marx, G.A., New linkage relations for chromosome III of Pisum, Pisum Newsl., 1971, vol. 3, pp. 18–19.Google Scholar
  79. Maxted, N., Kell, S., Ford-Lloyd, B., Dulloo, E., and Toledo, B., Toward the systematic conservation of global crop wild relative diversity, Crop Sci., 2012, vol. 52, pp. 774–785.CrossRefGoogle Scholar
  80. Maxted, N. and Ambrose, M., Peas (Pisum L.), in Plant Genetic Res. of Legumes in the Mediterranean. Current Plant Science and Biotechnology in Agriculture, Maxted, N. and Bennett, S.J., Eds., 2001, Dordrecht: Kluwer Acad. Publ., pp. 181–190.Google Scholar
  81. Maxted, N. and Kell, S.P., Establishment of a Global Network for the in situ Conservation of Crop Wild Relatives: Status and Needs, Rome: FAO Commission on Genetic Resources for Food and Agriculture, 2009.Google Scholar
  82. McPhee, K.E., Tullu, A., Kraft, J.M., and Muehlbauer, F.J., Resistance to Fusarium wilt race 2 in the Pisum core collection, J. Am. Soc. Hortic. Sci., 1999, vol. 124, pp. 28–31.Google Scholar
  83. Murfet, I.C. and Reid, J.B., Developmental mutants, in Peas: Genetics, Molecular Biology and Biotechnology, Casey, R. and Davies, D.R., Eds., Wallingford: CAB International, 1993, pp. 165–216.Google Scholar
  84. Nikulina, Y.N., The neoplastic pod gene (Np) may be a factor of resistance to the pest Bruchus pisorum L., Pisum Genet., 1992, vol. 24, pp. 37–39.Google Scholar
  85. North, H., Casey, R., and Domoney, C., Inheritance and mapping of seed lypoxigenase peptides in Pisum, Theor. Appl. Genet., 1989, vol. 77, pp. 805–808.PubMedCrossRefGoogle Scholar
  86. Oliver, J.E., Doss, R.P., Marquez, B., and DeVilbiss, E.D., Bruchins, plant mitogens from weevils: Structural requirements for activity, J. Chem. Ecol., 2002, vol. 28, pp. 2503–2513.PubMedCrossRefGoogle Scholar
  87. Oliver, J.E., Doss, R.P., Williamson, R.T., Carney, J.R., and DeVilbiss, E.D., Bruchins–mitogenic 3-(hydroxypropanoyl) esters of long chain diols from weevils of the Bruchidae, Tetrahedron, 2000, vol. 56, pp. 7633–7641.CrossRefGoogle Scholar
  88. Porter, L.D., Hoheisel, G., and Coffman, V.A., Resistance of peas to Sclerotinia sclerotiorum in the Pisum core collection, Plant Pathol., 2009, vol. 58, pp. 52–60.CrossRefGoogle Scholar
  89. Provvidenti, R. and Hampton, R.O., Inheritance of resistance to white lupin mosaic virus in common pea, HortScience, 1993, vol. 28, pp. 836–837.Google Scholar
  90. Provvidenti, R. and Alconero, R., Inheritance of resistance to a lentil strain of pea seed-borne mosaic virus in Pisum sativum, J. Hered., 1988, vol. 79, pp. 45–47.Google Scholar
  91. Ramirez-Villegas, J., Jarvis, A., and Läderach, P., Empirical approaches for assessing impacts of climate change on agriculture: The EcoCrop model and a case study with grain sorghum, Agric. For. Meteorol., 2013, vol. 170, pp. 67–78.CrossRefGoogle Scholar
  92. Redden, R.J., Yadav, S.S., Hatfield, J.L., Prasanna, B.M., Vasal, S.K., and Lafarge, T., The potential of climate change adjustment in crops: A synthesis. Changing climate in North America: Implications for crops, in Crop Adaptation to Climate Change, Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., and Hall, A.E., Eds., Oxford: Wiley-Blackwell, 2011, pp. 492–514.Google Scholar
  93. Schultz, J.C., Schonrogge, K., and Lichtenstein, C.P., Plant response to bruchins, Trends Plant Sci., 2001, vol. 6, p. 406.PubMedCrossRefGoogle Scholar
  94. Shlykov, G.R., Introduction of Plants, Moscow–Leningrad: Selkhozgiz, 1936.Google Scholar
  95. Shlykov, G.R., Introduction of Plants and Genetics, Moscow: VASKhNiL, 1937, pp. 218–230.Google Scholar
  96. Smýkal, P., Kenicer, G., Flavell, A.J., Corander, J., Kosterin, O., Redden, R.J., Ford, R., Coyne, C.J., Maxted, N., Ambrose, M.J., and Ellis, N.T.H., Phylogeny, phylogeography and genetic diversity of the Pisum genus, Plant Genet. Resour., Charact. Util., 2010, vol. 2010, pp. 1–15.Google Scholar
  97. Smýkal, P., Aubert, G., Burstin, J., Coyne, C.J., Ellis, N.T., Flavell, A.J., Ford, R., Hýbl, M., Macas, I., Neumann, P., McPhee, K.E., Redden, R.J., Rubiales, D., Weller, J.L., and Warkentin, T.D., Pea (Pisum sativum L.) in the genomic era, Agronomy, 2012, vol. 2, pp. 74–115.CrossRefGoogle Scholar
  98. Takhtajan, A., he Floristic Regions of the World, Leningrad: Nauka, 1978.Google Scholar
  99. Tanno, K. and Wilcox, G., How fast was wild wheat domesticated?, Science, 2006, vol. 311, p. 1886.PubMedCrossRefGoogle Scholar
  100. Townsend, C., Contribution to the flora of Iraq. V. Notes on Leguminosales, Kew Bull. Roy. Bot. Gard., 1968, vol. 2, pp. 435–458.Google Scholar
  101. Valderrama, M.R., Roman, B., Satovic, Z., Rubiales, D., Cubero, J.I., and Torres, A.M., Locating quantitative trait loci associated with Orobanche crenata resistance in pea, Weed Res., 2004, vol. 44, pp. 323–328.CrossRefGoogle Scholar
  102. Vavilov, N.I., Centres of origin of cultivated plants, Bull. Appl. Bot., Genet. Plant Breed., 1926, vol. 16, no. 2.Google Scholar
  103. Vavilov, N.I., World centres of cultivar treasures (genes) of cultivated plants, Izv. GIOA, 1927, vol. 5, no. 5, pp. 339–351.Google Scholar
  104. Vavilov, N.I., Problem of the origin of cultivated plants in modern comprehention, in Advances and Perspectives in the Field of Applied Botany, Genetics and Breeding, Leningrad: VIPGiNK and GIOA, 1929, pp. 11–22.Google Scholar
  105. Vershinin, A.V., Allnutt, T.R., Knox, M.R., and Ambrose, M.J., Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication, Mol. Biol. Evol., 2003, vol. 20, pp. 2067–2075.PubMedGoogle Scholar
  106. Vilkova, N.A., Kolesnichenko, L.I., and Shapiro, I.D., Methodic Recommendation on Revealing of Resistance of Pea Cultivars to Pea Weevil, Leningrad: Vses. Institut Rastenievod. VASKhNiL, 1977.Google Scholar
  107. Vito, M.D. and Perrino, P., Reaction of Pisum spp. to the attacks of Heterodera goettingiana, Nematologia Mediterranea, 1978, vol. 6, pp. 113–118.Google Scholar
  108. Waines, J.G., The biosystematics and domestication of peas (Pisum L.), Bul. Torrey Bot. Club, 1975, vol. 102, pp. 385–395.CrossRefGoogle Scholar
  109. Weeden, N.F., Brauner, S.O.R.E.N., and Przyborowski, J.A., Genetic analysis of pod dehiscence in pea (Pisum sativum L.), Cell. Mol. Biol. Lett., 2002, vol.7, no. 2b, pp. 657–664.PubMedGoogle Scholar
  110. Weeden, N.F., Genetic changes accompanying the domestication of Pisum sativum: Is there a common genetic basis to the 'domestication syndrome' for legumes?, Ann. Bot., 2007, vol. 100, pp. 1017–1025.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Weiss, E., Kislev, M.E., and Hartmann, A., Autonomous cultivation before domestication, Science, vol. 312, pp. 1608–1610.Google Scholar
  112. Wroth, J.M., Possible role of wild genotypes of Pisum spp. to enchance ascochyta blight resistance in pea, Aust. J. Exp. Agric., 1998, vol. 38, pp. 469–479.CrossRefGoogle Scholar
  113. Yang, J.P.W. and Mattews, P., A distinct class of peas (Pisum sativum L.) showing strain specificity for symbiotic Rhizobium leguminosarum, Heredity, 1982, vol. 48, pp. 203–210.CrossRefGoogle Scholar
  114. Yang, J.P.W., Johnson, W.B., and Brewin, N.J., A search for peas (Pisum sativum L.) showing strain specificity for symbiotic Rhizobium leguminosarum, Heredity, 1982, vol. 48, pp. 197–201.CrossRefGoogle Scholar
  115. Zaytseva, O.O., Bogdanova, V.S., and Kosterin, O.E., Phylogenetic reconstruction at the species and intraspecies levels in the genus Pisum (L.) (peas) using a histone H1 gene, Gene, 2012, vol. 504, pp. 192–202.PubMedCrossRefGoogle Scholar
  116. Zaytseva, O.O., Gunbin, K.V., Mglinets, A.V., and Kosterin, O.E., Divergence and population traits in evolution of the genus Pisum L. as reconstructed using genes of two histone H1 subtypes showing different phylogenetic resolution, Gene, 2015, vol. 556, pp. 235–244.PubMedCrossRefGoogle Scholar
  117. Zhukovsky, P.M., Kulturnye rasteniya i ikh sorodichi (Cultivated Plants and Their Relatives), Leningrad: Kolos, 1971, 3rd ed.Google Scholar
  118. Zohary, M., Geobotanical Foundations of the Middle East, Stuttgart: Gustav Fischer Verlag, 1973, vols. 1–2.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Cytology and Genetics SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations