Simulation of the evolution of the legume-rhizobia symbiosis under the conditions of ecological instability

  • N. I. Vorobyov
  • N. A. Provorov


A mathematical model is constructed which describes the impacts of a chaotically changing environment on the frequencies and productivity of partners in the legume-rhizobia symbiosis (LRS). The most sensitive for external impacts are the adaptively prospective bacteria strains which are specific with respect to hosts and are capable for the intensive evolution towards an improved symbiotic efficiency. The increased stability of these strains in the symbiotic system may be an important factor of its evolution for the improved efficiency of partners’ interaction.


mathematical simulation evolution of symbiosis chaotic changes of the environment plantmicrobe systems efficiency and specificity of partners’ interactions computer experiments random number generator Monte-Carlo method 



legume-rhizobia symbioses


genotypic structure of the symbiosis


random number generator


environmental efficiency of the symbiosis


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dobrovol’skij, V.V., Geografija pochv s osnovami pochvovedenija (Geography of Soils with the Foundations of Soil Science), Moscow: Vysshaya Shkola, 1989.Google Scholar
  2. Ermakov, S.M., Metod Monte-Karlo v vychislitel’noj matematike. Vvodnyj kurs (Monte-Carlo Method in the Calculator Mathematics. Introductory Course), St. Petersburg: Nevskii Dialekt, 2009.Google Scholar
  3. Knut, D.Je., Sluchajnye chisla. Iskusstvo programmirovanija (Random Figures. Art of Programming), Vol. 2: Poluchislennye algoritmy (Halfnumber Algorithms), 3rd ed., Moscow: Vil’yams, 2000.Google Scholar
  4. Pershina E.V., Andronov E.E., Pinaev A.G., Provorov N. A. Recent advances and perspective sinmetagenomic studies of soil microbial communities, in Management of Microbial Resources in the Environment, Malik, A., Grohmann, E., and Alves, M., Eds., Dordrecht: Springer, 2013, pp. 141–166.CrossRefGoogle Scholar
  5. Provorov, N.A. and Tikhonovich, I.A., Ecological-genetic principles of plant selection fir increased efficiency of interactions with microorganisms, S.-Kh. Biol., 2003, no. 3, pp. 11–25.Google Scholar
  6. Provorov, N.A. and Vorobyov, N.I., Population genetics of rhizobia: construction and analysis of an “infection and release” model, J. Theor. Biol., 2000, vol. 205, pp. 105–119.CrossRefPubMedGoogle Scholar
  7. Provorov, N.A. and Vorobyov, N.I., Equilibrium between the “genuine mutualists” and “symbiotic cheaters” in the bacterial population co-evolving with plants in a facultative symbiosis, Theor. Population Biol., 2008, vol. 74, pp. 345–355.CrossRefGoogle Scholar
  8. Provorov, N.A. and Vorobyov, N.I., Simulation of evolution implemented in the mutualistic symbioses towards enhancing their ecological efficiency, functional integrity and genotypic specificity, Theor. Population Biol., 2010, vol. 78, pp. 259–269.CrossRefGoogle Scholar
  9. Provorov, N.A. and Vorobyov, N.I., Geneticheskie osnovyj evoljucii rastitel’no-mikrobnogo simbioza (Genetic Bases of the Evolution of Plant-Microbe Symbiosis), Tikhonovich, I.A., Ed., St. Petersburg: Inform-Navigator, 2012.Google Scholar
  10. Provorov, N.A. and Vorobyov, N.I., Adaptivnaja i progressivnajaj evoljucija rastitel’no-mikrobnogo simbioza (Adaptive and Progressive Evolution of Plant-Microbe Symbiosis), Ekol. Genet., 2013, vol. 9, no. 1, pp. 12–22.Google Scholar
  11. Seckbach, J., Symbiosis: Mechanisms and Model Systems, Dordrecht: Kluwer Acad. Publ., 2002.CrossRefGoogle Scholar
  12. Sprent, J.I., Nodulation in Legumes, Kew, Royal Botanical Gardens: Cromwell Press Ltd., 2001.Google Scholar
  13. Sprent, J.I., West African legumes: the role of nodulation and nitrogen fixation, New Phytologist, 2005, vol. 167, pp. 326–330.CrossRefPubMedGoogle Scholar
  14. Tikhonovich, I.A. and Provorov, N.A., Simbiozy rastenii mikroorganizmov: molekuljarnaja genetika agrosistem budushhego (Symbioses of Plants and Microorganisms: Molecular Genetics of the Agrosystems of Future), St.-Petersburg: Izd. SPbGU, 2009.Google Scholar
  15. Tikhonovich, I.A. and Provorov, N.A., Development of the approaches of symbiogenetics for analyzing the variation and inheritance of the super-species systems, Genetika, 2012, vol. 48, pp. 437–450.PubMedGoogle Scholar
  16. van de Velde, W., Zehirov, G., Szatmari, A., et al., Plant peptides govern terminal differentiation of bacteria in symbiosis, Science, 2010, vol. 327, pp. 1122–1126.CrossRefPubMedGoogle Scholar
  17. Vorobyov, N.I. and Provorov, N.A., Simulation of evolution of legume-rhizobia symbiosis under multistrain competition of bacteria for inoculation of symbiotic niches, Ekol. Genet., 2008, vol. 6, no. 4, pp. 3–11.Google Scholar
  18. Vorobyov, N.I. and Provorov, N.A., Simulation of evolution of legume-rhizobia symbiosis for an increased functional integrity of partners and the efficiency of their interactions, Ekol. Genet., 2010, vol. 8, no. 3, pp. 16–26.Google Scholar
  19. Wang, D., Yang, S., Tang, F., and Zhu, H., Symbiosis specificity in the legume-rhizobial mutualism, Cell. Microbiol., 2012, vol. 14, pp. 334–342.CrossRefPubMedGoogle Scholar
  20. Wier, B.S., Genetic Data Analysis II: Methods for Discrete Population Genetic Data, Massachusetts: Sinauer Associates, Inc. Publ., 1996.Google Scholar
  21. Wright, J.S., Plant diversity in tropical forests: a review of mechanisms of species coexistence, Oecologia, 2002, vol. 130, pp. 1–14.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.All-Russia Research Institute for Agricultural MicrobiologySt. PetersburgRussia
  2. 2.International Research Centre Biotechnologies of the Third MillenniumITMO UniversitySt. PetersburgRussia

Personalised recommendations