Russian Journal of Genetics: Applied Research

, Volume 2, Issue 1, pp 72–78 | Cite as

Evolution and biodiversity of L1 retrotransposons in angiosperm genomes



At present, only fragmentary data about the biodiversity and structural features of L1 retrotransposons of angiosperms related to individual elements from few genomes are available. There is no clear cladistic classification of transposable elements of this family. Structural data on elements from particular groups of angiosperm L1 retrotransposons are also scarce. For these reasons, a comprehensive structural and phylogenetic analysis of L1 retrotransposons in angiosperms has been undertaken. We have compiled information on 19 genomes of angiosperm species that was available in databases and discerned three clades of L1 elements on the base of the phylogeny of the conserved reverse transcriptase region and on their structural organization. It is demonstrated that the emergence of new protein types that form the ribonucleoprotein particles of the retrotransposons and the acquisition of RNH protein-encoding regions by several elements were crucial steps in the formation of new L1 retrotransposon types.


L1 non-LTR retrotransposons angiosperms bioinformatic search molecular evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anisimova, M. and Gascuel, O., Approximate Likelihood-Ratio Test for Branches: A Fast, Accurate, and Powerful Alternative, Syst. Biol., 2006, vol. 55, pp. 539–552.PubMedCrossRefGoogle Scholar
  2. Chaw, S.M., Chang, C.C., Chen, H.L., and Li, W.H., Dating the Monocot-Dicot Divergence and the Origin of Core Eudicots using Whole Chloroplast Genomes, J. Mol. Evol., 2004, vol. 58, pp. 424–441.PubMedCrossRefGoogle Scholar
  3. Eddy, S.R., Profile Hidden Markov Models, Bioinformatics, 1998, vol. 14, pp. 755–763.PubMedCrossRefGoogle Scholar
  4. Edgar, R.C., MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput, Nucleic Acids Res., 2004, vol. 32, pp. 1792–1797.PubMedCrossRefGoogle Scholar
  5. Guindon, S., Dufayard, J.F., Lefort, V., et al., New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0, Syst. Biol., 2010, vol. 59, pp. 307–321.PubMedCrossRefGoogle Scholar
  6. Heitkam, T. and Schmidt, T., BNR—a LINE Family from Beta vulgaris—Contains a RRM Domain in Open Reading Frame 1 and Defines a L1 Sub-Clade Present in Diverse Plant Genomes, Plant J., 2009, vol. 59, pp. 872–882.PubMedCrossRefGoogle Scholar
  7. Higashiyama, T., Noutoshi, Y., Fujie, M., and Yamada, T., Zepp, a LINE-Like Retrotransposon Accumulated in the Chlorella Telomeric Region, EMBO J., 1997, vol. 16, pp. 3715–3723.PubMedCrossRefGoogle Scholar
  8. Jurka, J., Kapitonov, V.V., Pavlicek, A., et al., Repbase Update, a Database of Eukaryotic Repetitive Elements, Cytogenet. Genome Res., 2005, vol. 110, pp. 462–467.PubMedCrossRefGoogle Scholar
  9. Khazina, E. and Weichenrieder, O., Non-LTR Retrotransposons Encode Noncanonical RRM Domains in Their First Open Reading Frame, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 731–736.PubMedCrossRefGoogle Scholar
  10. Kojima, K.K. and Fujiwara, H., Cross-Genome Screening of Novel Sequence-Specific Non-LTR Retrotransposons: Various Multicopy RNA Genes and Microsatellites Are Selected as Targets, Mol. Biol. Evol., 2004, vol. 21, pp. 207–217.PubMedCrossRefGoogle Scholar
  11. Kojima, K.K. and Fujiwara, H., An Extra Ordinary Retrotransposon Family Encoding Dual Endonucleases, Genome Res., 2005, vol. 15, pp. 1106–1117.PubMedCrossRefGoogle Scholar
  12. Kolosha, V.O. and Martin, S.L., In vitro Properties of the First ORF Protein from Mouse LINE-1 Support Its Role in Ribonucleoprotein Particle Formation during Retrotransposition, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 10155–10160.PubMedCrossRefGoogle Scholar
  13. Lander, E.S., Linton, L.M., Birren, B., et al., Initial Sequencing and Analysis of the Human Genome, Nature, 2001, vol. 409, pp. 860–921.PubMedCrossRefGoogle Scholar
  14. Leeton, P.R. and Smyth, D.R., An Abundant LINE-Like Element Amplified in the Genome of Lilium speciosum, Mol. Gen. Genet., 1993, vol. 237, pp. 97–104.PubMedCrossRefGoogle Scholar
  15. Ma, J. and Bennetzen, J.L., Rapid Recent Growth and Divergence of Rice Nuclear Genomes, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 12404–12410.PubMedCrossRefGoogle Scholar
  16. Malik, H.S., Ribonuclease H Evolution in Retrotransposable Elements, Cytogenet. Genome Res., 2005, vol. 110, pp. 392–401.PubMedCrossRefGoogle Scholar
  17. Marchler-Bauer, A., Lu, S., Anderson, J.B., et al., CDD: a Conserved Domain Database for the Functional Annotation of Proteins, Nucleic Acids Res., 2011, vol. 39, pp. 225–229.CrossRefGoogle Scholar
  18. Maris, C., Dominguez, C., and Allain, F.H., The RNA Recognition Motif, a Plastic RNA-Binding Platform to Regulate Post-Transcriptional Gene Expression, FEBSJ, 2005, vol. 272, pp. 2118–2131.CrossRefGoogle Scholar
  19. Martin, S.L., The ORF1 Protein Encoded by LINE-1: Structure and Function during L1 Retrotransposition, J. Biomed. Biotechnol, 2006.Google Scholar
  20. Matsui, T., Tanaka, T., Endoh, H., et al., The RNA Recognition Mechanism of Human Immunodeficiency Virus (HIV) Type 2 NCp8 Is Different from that of HIV-1 NCp7, Biochemistry, 2009, vol. 48, pp. 4314–4323.PubMedCrossRefGoogle Scholar
  21. Noma, K., Ohtsubo, E., and Ohtsubo, H., Non-LTR Retrotransposons (LINEs) as Ubiquitous Components of Plant Genomes, Mol. Gen. Genet., 1999, vol. 261, pp. 71–79.PubMedCrossRefGoogle Scholar
  22. Noma, K., Ohtsubo, H., and Ohtsubo, E., ATLN Elements, LINEs from Arabidopsis thaliana: Identification and Characterization, DNA Res., 2000, vol. 7, pp. 291–303.PubMedCrossRefGoogle Scholar
  23. Novikova, O., Fet, V., and Blinov, A., Non-LTR Retrotransposons in Fungi, Funct. Integr. Genomics, 2008, vol. 9, pp. 27–42.PubMedCrossRefGoogle Scholar
  24. Rho, M., Tang H. MGE Scannon-LTR: Computational Identification and Classification of Autonomous Non-LTR Retrotransposons in Eukaryotic Genomes, Nucleic Acids Res., 2009, vol. 37, p. e143.PubMedCrossRefGoogle Scholar
  25. Sakamoto, K., Ohmido, N., Fukui, K., et al., Site-Specific Accumulation of a LINE-Like Retrotransposon in a Sex Chromosome of the Dioecious Plant Cannabis sativa, Plant. Mol. Biol., 2000, vol. 44, pp. 723–732.PubMedCrossRefGoogle Scholar
  26. Schwarz-Sommer, Z., Leclercq, L., Gobel, E., and Saedler, H., Cin4, An Insert Altering the Structure of the A1 Gene in Zea mays, Exhibits Properties of Nonviral Retrotransposons, EMBO J., 1987, vol. 6, pp. 3873–3880.PubMedGoogle Scholar
  27. Sding, J., Protein Homology Detection by HMM-HMM Comparison, Bioinformatics, 2005, vol. 21, pp. 951–960.CrossRefGoogle Scholar
  28. Sergeeva, E.M. and Salina, E.A., Mobile Elements and the Evolution of the Plant Genome, Vavilov. Zh. Genet. Selekts., 2011, vol. 15, no. 2, pp. 382–398.Google Scholar
  29. Sormacheva, N.D. and Blinov, A.G., LTR Retrotransposons of Plants, Vavilov. Zh. Genet. Selekts., 2011, vol. 15, no. 2, pp. 351–381.Google Scholar
  30. Tamura, K., Peterson, D., Peterson, N., et al., MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods, Mol. Biol. Evol., 2011.
  31. Turcotte, K., Srinivasan, S., and Bureau, T., Survey of Transposable Elements from Rice Genomic Sequences, Plant J., 2001, vol. 25, pp. 169–179.PubMedCrossRefGoogle Scholar
  32. Vershinin, A.V., Druka, A., Alkhimova, A.G., et al., LINEs and gypsy-Like Retrotransposons in Hordeum Species, Plant. Mol. Biol., 2002, vol. 49, pp. 1–14.PubMedCrossRefGoogle Scholar
  33. Wenke, T., Holtgrwe, D., Horn, A.V., et al., An Abundant and Heavily Truncated Non-LTR Retrotransposon (LINE) Family in Beta vulgaris, Plant. Mol. Biol., 2009, vol. 71, pp. 585–597.PubMedCrossRefGoogle Scholar
  34. Wright, D.A., Ke, N., Smalle, J., et al., Multiple Non-LTR Retrotransposons in the Genome of Arabidopsis thaliana, Genetics, 1996, vol. 142, pp. 569–578.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations