Russian Journal of Genetics: Applied Research

, Volume 1, Issue 6, pp 524–531 | Cite as

Evolutionarily recent groups of transposable elements in the human genome

Article
  • 26 Downloads

Abstract

Transposable elements (TEs) are fragments of DNA capable of self-reproduction in the genome of the host organism. They constitute ∼40–50% of mammalian genomes. We have identified two TE families that formed relatively recently in the course of human evolution. Members of the first family are present only in the human genome but are absent from other primate DNAs. This family represented by ∼80 members was formed by fusion of a portion of the CpG-island in the human MAST2 gene with the 3′-terminal fragment of the SVA retrotransposon. According to our estimates, this hybrid family, termed CpG-SVA, is significantly more active than the ancestor SVA family. The regulatory region of MAST2 allows copies of the new family to be transcribed in sperm precursor cells. The second family, called the family of chimera retrotranscripts, is older, but is still active today. Its representatives were formed by a rather unusual RNA recombination mechanism, which mediated the formation of fused DNA copies for diverse cellular transcripts. We showed that similar mechanisms operate in the genomes of other mammals and even fungi.

Keywords

human evolution genetic instability transposable elements regulation of gene expression genetic chimeras hybrid family of retrotransposons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buzdin, A., Transposable Elements and Their Use for Target Site Specific Gene Delivery, Curr. Pharmacogenomics, 2006, vol. 4, no. 1, pp. 1–8.CrossRefGoogle Scholar
  2. Buzdin, A.A., Retroelements and Formation of Chimeric Retrogenes, Cell Mol. Life Sci., 2004, vol. 61, no. 16, pp. 2046–2059.PubMedCrossRefGoogle Scholar
  3. Brosius, J., Genomes Were Forged by Massive Bombardments with Retroelements and Retrosequences, Genetics, 1999b, vol. 107, nos. 1/3, pp. 209–238.Google Scholar
  4. Buzdin, A., Gogvadze, E., and Lebrun, M.H., Chimeric Retrogenes Suggest a Role for the Nucleolus in LINE Amplification, FEBS Lett., 2007, vol. 581, no. 16, pp. 2877–2882.PubMedCrossRefGoogle Scholar
  5. Buzdin, A., Gogvadze, E., Kovalskaya, E., et al., The Human Genome Contains Many Types of Chimeric Retrogenes Generated through in vivo RNA Recombination, Nucleic Acids Res., 2003, vol. 31, no. 15, pp. 4385–4390.PubMedCrossRefGoogle Scholar
  6. Buzdin, A., Ustyugova, S., Gogvadze, E., et al., A New Family of Chimeric Retrotranscripts Formed by a Full Copy of U6 Small Nuclear RNA Fused to the 3 Terminus of 11, Genomics, 2002, vol. 80, no. 4, pp. 402–406.PubMedCrossRefGoogle Scholar
  7. Buzdin, A., Vinogradova, T., Lebedev, Y., and Sverdlov, E., Genome-Wide Experimental Identification and Functional Analysis of Human Specific Retroelements, Cytogenet. Genome Res., 2005, vol. 1101, nos. 1/4, pp. 468–474.CrossRefGoogle Scholar
  8. Brosius, J., RNAs from All Categories Generate Retrosequences That May Be Exapted as Novel Genes or Regulatory Elements, Gene, 1999a, vol. 238, no. 1, pp. 115–134.PubMedCrossRefGoogle Scholar
  9. Babushok, D.V., Ostertag, E.M., Courtney, C.E., et al., L1 Integration in a Transgenic Mouse Model, Genome Res., 2006, vol. 16, no. 2, pp. 240–250.PubMedCrossRefGoogle Scholar
  10. Bantysh, O.B. and Buzdin, A.A., Novel Family of Human Transposable Elements Formed Due to Fusion of the First Exon of Gene MAST2 with Retrotransposon SVA, Biochemistry (Moscow), 2009, vol. 74, no. 12, pp. 1393–1399.CrossRefGoogle Scholar
  11. Boissinot, S., Chevret, P., and Furano, A.V., L1 (LINE-1) Retrotransposon Evolution and Amplification in Recent Human History, Mol. Biol. Evol., 2000, vol. 17, no. 6, pp. 915–928.PubMedGoogle Scholar
  12. Bibillo, A. and Eickbush, T.H., End-to-End Template Jumping by the Reverse Transcriptase Encoded by the R2 Retrotransposon, J. Biol. Chem., 2004, vol. 279, no. 15, pp. 14945–14953.PubMedCrossRefGoogle Scholar
  13. Damert, A., Raiz, J., Horn, A.V., et al., 5-Transducing SVA Retrotransposon Groups Spread Efficiently Throughout the Human Genome, Genome Res., 2009, vol. 19, no. 11, pp. 1992–2008.PubMedCrossRefGoogle Scholar
  14. Dewannieux, M., Esnault, C., and Heidmann, T., LINE-Mediated Retrotransposition of Marked Alu Sequences, Nat. Genet., 2003, vol. 35, no. 1, pp. 41–48.PubMedCrossRefGoogle Scholar
  15. Deininger, P.L., Moran, J.V., Batzer, M.A., and Kazazian, H.H., Mobile Elements and Mammalian Genome Evolution, Curr. Opin. Genet. Dev., 2003, vol. 13, no. 6, pp. 651–658.PubMedCrossRefGoogle Scholar
  16. Fudal, I., Bohnert, H.U., Tharreau, D., and Lebrun, M.H., Transposition of LINE, a Composite Retrotransposon, in the Avirulence Gene ACE1 of the Rice Blast Fungus Magnaporthe grisea, Fungal. Genet. Biol., 2005, vol. 42, no. 9, pp. 761–772.PubMedCrossRefGoogle Scholar
  17. Furano, A.V., The Biological Properties and Evolutionary Dynamics of Mammalian LINE-1 Retrotransposons, Prog. Nucl. Acid Res. Mol. Biol., 2000, vol. 64, pp. 255–294.CrossRefGoogle Scholar
  18. Gilbert, N., Lutz, S., Morrish, T.A., and Moran, J.V., Multiple Fates of L1 Retrotransposition Intermediates in Cultured Human Cells, Mol. Cell Biol., 2005, vol. 25, no. 17, pp. 7780–7795.PubMedCrossRefGoogle Scholar
  19. Gogvadze, E. and Buzdin, A., Retroelements and Their Impact on Genome Evolution and Functioning, Cell Mol. Life Sci., 2009, vol. 66, no. 23, pp. 3727–3742.PubMedCrossRefGoogle Scholar
  20. Gogvadze, E., Barbisan, C., Lebrun, M.H., and Buzdin, A., Tripartite Chimeric Pseudogene from the Genome of Rice Blast Fungus Magnaporthe grisea Suggests Double Template Jumps during Long Interspersed Nuclear Element (LINE) Reverse Transcription, BMC Genomics, 2007, vol. 8, p. 360.PubMedCrossRefGoogle Scholar
  21. Gogvadze, E.V., Buzdin, A.A., and Sverdlov, E.D., Multiple Template Switches on LINE-Directed Reverse Transcription: The Most Probable Formation Mechanism for the Double and Triple Chimeric Retroelements in Mammals, Russ. J. Bioorg. Chem., 2005, vol. 31, no. 1, pp. 74–81.CrossRefGoogle Scholar
  22. Gogvadze, E.V. and Buzdin, A.A., A New Mechanism of Retrogene Formation in Mammalian Genomes: In Vivo Recombination during RNA Reverse Transcription, Mol. Biol. (Moscow), 2005, vol. 39, no. 3, pp. 321–330.CrossRefGoogle Scholar
  23. Hayward, B.E., Zavanelli, M., and Furano, A.V., Recombination Creates Novel L1 (LINE-1) Elements in Rattus norvegicus, Genetics, 1997, vol. 146, no. 2, pp. 641–654.PubMedGoogle Scholar
  24. Hancks, D.C., Ewing, A.D., Chen, J.E., et al., Exon-Trapping Mediated by the Human Retrotransposon SVA, Genome Res., 2009, vol. 19, no. 11, pp. 1983–1991.PubMedCrossRefGoogle Scholar
  25. Jurka, J., Sequence Patterns Indicate An Enzymatic Involvement in Integration of Mammalian Retroposons, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, no. 5, pp. 1872–1877.PubMedCrossRefGoogle Scholar
  26. Jamain, S., Girondot, M., Leroy, P., et al., Transduction of the Human Gene FAM8A1 by Endogenous Retrovirus During Primate Evolution, Genomics, 2001, vol. 78, nos. 1/2, pp. 38–45.PubMedCrossRefGoogle Scholar
  27. Kramerov, D.A. and Vassetzky, N.S., Structure and Origin of a Novel Dimeric Retroposon B1-DiD, J. Mol. Evol., 2001, vol. 52, no. 2, pp. 137–143.PubMedGoogle Scholar
  28. Kramerov, D.A. and Vassetzky, N.S., Short Retroposons in Eukaryotic Genomes, Int. Rev. Cytol., 2005, vol. 247, pp. 165–221.PubMedCrossRefGoogle Scholar
  29. Kazazian, H.H., Jr. Mobile Elements: Drivers of Genome Evolution, Science, 2004, vol. 303, no. 5664, pp. 1626–1632.PubMedCrossRefGoogle Scholar
  30. Kandel, E.S. and Nudler, E., Template Switching by RNA Polymerase II in vivo. Evidence and Implications from a Retroviral System, Mol. Cell, 2002, vol. 10, no. 6, pp. 1495–1502.PubMedCrossRefGoogle Scholar
  31. Lebedev, Y.B., Amosova, A.L., Mamedov, I.Z., et al., Most Recent AluY Insertions in Human Gene Introns Reduce the Content of the Primary Transcripts in a Cell Type Specific Manner, Gene, 2007, vol. 390, nos. 1/2, pp. 122–129.PubMedCrossRefGoogle Scholar
  32. Martin, S.L., The ORF1 Protein Encoded by LINE-1: Structure and Function during L1 Retrotransposition, J. Biomed. Biotechnol., 2006, vol. 2006, pp. 1–6.CrossRefGoogle Scholar
  33. Mills, R.E., Bennett, E.A., Iskow, R.C., et al., Recently Mobilized Transposons in the Human and Chimpanzee Genomes, Am. J. Hum. Genet., 2006, vol. 78, no. 4, pp. 671–679.PubMedCrossRefGoogle Scholar
  34. Malik, H.S. and Eickbush, T.H., Phylogenetic Analysis of Ribonuclease H Domains Suggests a Late, Chimeric Origin of LTR Retrotransposable Elements and Retroviruses, Genome Res., 2001, vol. 11, no. 7, pp. 1187–1197.PubMedCrossRefGoogle Scholar
  35. Nishihara, H., Smit, A.F., and Okada, N., Functional Noncoding Sequences Derived from SINEs in the Mammalian Genome, Genome Res., 2006, vol. 16, no. 7, pp. 864–874.PubMedCrossRefGoogle Scholar
  36. Ohshima, K., Hamada, M., Terai, Y., and Okada, N., The 3 Ends of TRNA-Derived Short Interspersed Repetitive Elements Are Derived from the 3 Ends of Long Interspersed Repetitive Elements, Mol. Cell Biol., 1996, vol. 16, no. 7, pp. 3756–3764.PubMedGoogle Scholar
  37. Sverdlov, E.D., Perpetually Mobile Footprints of Ancient Infections in Human Genome, FEBS Lett., 1998, vol. 428, nos. 1/2, pp. 1–6.PubMedCrossRefGoogle Scholar
  38. Sverdlov, E.D., Retroviruses and Primate Evolution, BioEssays, 2000, vol. 22, no. 2, pp. 161–171.PubMedCrossRefGoogle Scholar
  39. Swanstrom, R., Parker, R.C., Varmus, H.E., and Bishop, J.M., Transduction of a Cellular Oncogene: The Genesis of Rous Sarcoma Virus, Proc. Natl. Acad. Sci. U.S.A., 1983, vol. 80, no. 9, pp. 2519–2523.PubMedCrossRefGoogle Scholar
  40. Schumann, G.G., Gogvadze, E.V., Osanai-Futahashi, M., et al., Unique Functions of Repetitive Transcriptomes, Int. Rev. Cell Mol. Biol., 2010, vol. 285, pp. 115–188.PubMedCrossRefGoogle Scholar
  41. Sen, S.K., Han, K., Wang, J., et al., Human Genomic Deletions Mediated by Recombination between Alu Elements, Am. J. Hum. Genet., 2006, vol. 79, no. 1, pp. 41–53.PubMedCrossRefGoogle Scholar
  42. Temin, H.M., Retrovirus Variation and Reverse Transcription: Abnormal Strand Transfers Result in Retrovirus Genetic Variation, Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, no. 15, pp. 6900–6903.PubMedCrossRefGoogle Scholar
  43. Ustyugova, S.V., Lebedev, Y.B., and Sverdlov, E.D., Long L1 Insertions in Human Gene Introns Specifically Reduce the Content of Corresponding Primary Transcripts, Genetica, 2006, vol. 128, no 1/3, pp. 261–272.PubMedCrossRefGoogle Scholar
  44. Ustyugova, S.V., Amosova, A.L., Lebedev, Yu.B., and Sverdlov, E.D., A Tissue-Specific Decrease in the Pre-mRNA Level of L1- and Alu-Containing Alleles of Human Genes, Bioorg. Khim., 2006, vol. 32, no. 1, pp. 83–95.Google Scholar
  45. van de Lagemaat, L.N., Medstrand, P., and Mager, D.L., Multiple Effects Govern Endogenous Retrovirus Survival Patterns in Human Gene Introns, Genome Biol., 2006, vol. 7, no. 9, p. R86.PubMedCrossRefGoogle Scholar
  46. Wessler, S.R., Transposable Elements and the Evolution of Gene Expression, Symp. Soc. Exp. Biol., 1998, vol. 51, pp. 115–122.PubMedGoogle Scholar
  47. Wang, H., Xing, J., Grover, D., et al., SVA Elements: a Hominid-Specific Retroposon Family, J. Mol. Biol., 2005, vol. 354, no. 4, pp. 994–1007.PubMedCrossRefGoogle Scholar
  48. Zabolotneva, A., Tkachev, V., Filatov, F., and Buzdin, A., How Many Antiviral Small Interfering RNAs May Be Encoded by the Mammalian Genomes?, Biol. Direct., 2010, vol. 5, p. 62.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryMoscowRussia

Personalised recommendations