Advances in Gerontology

, Volume 9, Issue 1, pp 1–14 | Cite as

Why and How Do We Age? A Single Answer to Two Questions

  • A. G. GolubevEmail author


The chemical properties of the compounds involved in metabolic processes, even the core ones, such as glycolysis and the Krebs cycle, are not confined to the properties utilized in enzymatic reactions; they include the ability to spontaneously form covalent bonds with other compounds, including macromolecule components. The effects of the gene that codes for an enzyme catalyzing the formation of a metabolite with such properties may be regarded as antagonistically pleiotropic. The effects implemented via the product of the reaction catalyzed by the enzyme coded for by the gene are required to maintain viability. As for the effects mediated by the spontaneous formation of covalent bonds between this product and slowly renewable macromolecules, they are increasingly deleterious with time, which is provided by the positive effects. Thus, the antagonistically pleiotropic effects are not late-acting, as it is commonly believed, but are cumulative. Since these effects are inseparable from the metabolism, they may be labeled “parametabolic.” The driving force produced by these effects is sufficient for aging to take place in any system that exists due to metabolic processes therein, whereas its genetic information is stored and some other functions, e.g. bearing, are performed by macromolecular components, which feature a much slower turnover than that of the metabolites. Thus, we age because of the chemical properties of our constituents, and we do so as determined by these properties implemented under the conditions in our bodies. Aging is neither a direct product of evolution via natural selection (such as a program determining lifespan) nor a byproduct (delayed payment for current advantages). Aging results from the limitations imposed by the immanent physicochemical properties of metabolites on the capabilities and outcomes of the evolution by natural selection; this is what distinguishes aging from the tear and wear of inanimate objects.


aging evolution metabolism organic chemistry 



  1. 1.
    Al-Abed, Y., Schleicher, E., Voelter, W., et al., Identification of N2-(1-carboxymethyl)guanine (CMG) as a guanine advanced glycation end product, Bioorg. Med. Chem. Lett., 1998, vol. 8, pp. 2109–2110.CrossRefPubMedGoogle Scholar
  2. 2.
    Aldini, G., Vistoli, G., Stefek, M., et al., Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products, Free Radical Res., 2013, vol. 47, suppl., pp. 93–137.CrossRefGoogle Scholar
  3. 3.
    Allaman, I., Belanger, M., and Magistretti, P.J., Methylglyoxal, the dark side of glycolysis, Front. Neurosci., 2015, vol. 9, no. 23.
  4. 4.
    Asanuma, M., Miyazaki, I., and Ogawa, N., Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease, Neurotoxic. Res., 2003, vol. 5, pp. 165–176.CrossRefGoogle Scholar
  5. 5.
    Barja, G., The mitochondrial free radical theory of aging, Prog. Mol. Biol. Transl. Sci., 2014, vol. 127, pp. 1–27.CrossRefPubMedGoogle Scholar
  6. 6.
    Belarbi, K., Cuvelier, E., Destee, A., et al., NADPH oxidases in Parkinson’s disease: a systematic review, Mol. Neurodegener., 2017, vol. 12, no. 1, p. 84. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bhat, W.F., Bhat, S.A., Khaki, P. S.S., and Bano, B., Employing in vitro analysis to test the potency of methylglyoxal in inducing the formation of amyloid-like aggregates of caprine brain cystatin, Amino Acids, 2015, vol. 47, pp. 135–146.CrossRefPubMedGoogle Scholar
  8. 8.
    Bhatia-Dey, N., Kanherkar, R.R., Stair, S.E., et al., B. Cellular Senescence as the causal nexus of aging, Front. Genet., 2016, vol. 7, p. 13. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bilinski, T., Bylak, A., and Zadrag-Tecza, R., Principles of alter native gerontology, Aging (N.Y.), 2016, vol. 8, no. 4, pp. 589–602.CrossRefGoogle Scholar
  10. 10.
    Bjorksten, J. and Tenhu, H., The cross-linking theory of aging: added evidence, Exp. Gerontol., 1990, vol. 25, pp. 91–95.CrossRefPubMedGoogle Scholar
  11. 11.
    Carter, A.J. and Nguyen, A.Q., Antagonistic pleiotropy as a widespread mechanism for the maintenance of polymorphic disease alleles, BMC Med. Genet., 2011, vol. 12, p. 160. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Caspi, R., Billington, R., Ferrer, L., et al., The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases, Nucleic Acids Res., 2016, vol. 44, pp. D471–D480.CrossRefPubMedGoogle Scholar
  13. 13.
    Cavalieri, E.L., Rogan, E.G., and Chakravarti, D., Initiation of cancer and other diseases by catechol ortho-quinones: a unifying mechanism, Cell. Mol. Life Sci., 2002, vol. 59, pp. 665–681.CrossRefPubMedGoogle Scholar
  14. 14.
    Chaleckis, R., Murakami, I., Takada, J., et al., Individual variability in human blood metabolites identifies age-related differences, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, pp. 4252–4259.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Coles, L.S. and Young, R.D., Supercentenarians and transthyretin amyloidosis: the next frontier of human life extension, Prev. Med., 2012, vol. 54, suppl., pp. S9–S11.CrossRefPubMedGoogle Scholar
  16. 16.
    Currais, A., Goldberg, J., Farrokhi, C., et al., A comprehensive multiomics approach toward understanding the relationship between aging and dementia, Aging (N.Y.), 2015, vol. 7, pp. 937–955.CrossRefGoogle Scholar
  17. 17.
    Da Costa, J.P., Vitorino, R., Silva, G.M., et al., A synopsis on aging—theories, mechanisms and future prospects, Ageing Res. Rev., 2016, vol. 29, pp. 90–112.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dammann, P., Sell, D.R., Begall, S., et al., Advanced glycation end-products as markers of aging and longevity in the long-lived Ansell’s mole-rat (Fukomys anselli), J. Gerontol., Ser. A, 2012, vol. 67, pp. 573–583.Google Scholar
  19. 19.
    Distler, M.G., Plant, L.D., Sokoloff, G., et al., Glyoxalase 1 increases anxiety by reducing GABAA receptor agonist methylglyoxal, J. Clin. Invest., 2012, vol. 122, pp. 2306–2315.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dong, X., Milholland, B., and Vijg, J., Evidence for a limit to human lifespan, Nature, 2016, vol. 538, pp. 257–259.CrossRefPubMedGoogle Scholar
  21. 21.
    Drenos, F. and Kirkwood, T.B., Modeling the disposable soma theory of ageing, Mech. Ageing Dev., 2005, vol. 126, pp. 99–103.CrossRefPubMedGoogle Scholar
  22. 22.
    Droge, W., Oxidative stress and aging, Adv. Exp. Med. Biol., 2003, vol. 543, pp. 191–200.CrossRefPubMedGoogle Scholar
  23. 23.
    Gavrilov, L.A. and Gavrilova, N.A., Theoretical perspectives on biodemography of aging and longevity, in Handbook of Theories of Aging, Vern, L. and Bengtson, R.A.S., Eds., New York: Springer-Verlag, 2016, pp. 643–667.Google Scholar
  24. 24.
    Gebauer, J., Gentsch, C., Mansfeld, J., et al., A genome-scale database and reconstruction of Caenorhabditis elegans metabolism, Cell. Syst., 2016, vol. 2, pp. 312–322.CrossRefPubMedGoogle Scholar
  25. 25.
    Gensler, H.L. and Bernstein, H., DNA damage as the primary cause of aging, Q. Rev. Biol., 1981, vol. 56, pp. 279–303.CrossRefPubMedGoogle Scholar
  26. 26.
    Gladyshev, V.N., The origin of aging: imperfectness-driven non-random damage defines the aging process and control of lifespan, Trends Genet., 2013, vol. 29, pp. 506–512.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gladyshev, V.N., Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes, Aging Cell, 2016, vol. 15, pp. 594–602.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Goldford, J.E. and Segrè, D., Modern views of ancient metabolic networks, Curr. Opin. Syst. Biol., 2018, vol. 8, pp. 117–124.CrossRefGoogle Scholar
  29. 29.
    Goldsmith, T.P., Emerging programmed aging mechanisms and their medical implications, Med. Hypotheses, 2016, vol. 86, pp. 92–96.CrossRefPubMedGoogle Scholar
  30. 30.
    Goldstein, D.S., Kopin, I.J., and Sharabi, Y., Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders, Pharmacol. Ther., 2014, vol. 144, pp. 268–282.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Golubev, A., How could the Gompertz-Makeham law evolve, J. Theor. Biol., 2009, vol. 258, pp. 1–17.CrossRefPubMedGoogle Scholar
  32. 32.
    Golubev, A., Hanson, A.D., and Gladyshev, V.N., Nonenzymatic molecular damage as a prototypic driver of aging, J. Biol. Chem., 2017, vol. 292, pp. 6029–6038.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Golubev, A., Hanson, A.D., and Gladyshev, V.N., A tale of two concepts: harmonizing the free radical and antagonistic pleiotropy theories of aging, Antioxid. Redox Signaling, 2017.
  34. 34.
    Golubev, A.G., Catecholamines, steroids and aging of the nervous and endocrine systems, Usp. Sovrem. Biol., 1989, no. 6, pp. 64–75.Google Scholar
  35. 35.
    Golubev, A.G., The other side of metabolism: a review, Biochemistry (Moscow), 1996, vol. 61, no. 11, pp. 1443–1460.Google Scholar
  36. 36.
    Golubev, A.G., Evolution of lifespan and ageing, Biosfera, 2011, vol. 3, pp. 338–368.Google Scholar
  37. 37.
    Golubev, A.G., The issue of the feasibility of a general theory of aging. III. Theory and practice of aging, Adv. Gerontol., 2012, vol. 2, no. 2, pp. 109–119.CrossRefGoogle Scholar
  38. 38.
    Golubev, A.G., Commentary: Is life extension today a Faustian bargain?, Front. Med., 2018, vol. 5, no. 73.
  39. 39.
    Gomes, R.A., Vicente Miranda, H., Sousa Silva, M., et al., Protein glycation and methylglyoxal metabolism in yeast: finding peptide needles in protein haystacks, FEMS Yeast Res., 2008, vol. 8, pp. 174–181.CrossRefPubMedGoogle Scholar
  40. 40.
    Gonidakis, S. and Longo, V.D., Assessing chronological aging in bacteria, Methods Mol. Biol. (N.Y.), 2013, vol. 965, pp. 421–437.CrossRefGoogle Scholar
  41. 41.
    Gorisse, L., Pietrement, C., Vuiblet, V., et al., Protein carbamylation is a hallmark of aging, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, pp. 1191–1196.CrossRefPubMedGoogle Scholar
  42. 42.
    Grüning, N.-M., Du, D., Keller, M.A., et al., Inhibition of triosephosphate isomerase by phosphoenolpyruvate in the feedback-regulation of glycolysis, Open Biol., 2014, vol. 4, no. 3.
  43. 43.
    Hamilton, W.D., The molding of senescence by natural selection, J. Theor. Biol., 1966, vol. 12, pp. 12–45.CrossRefPubMedGoogle Scholar
  44. 44.
    Hanson, A.D., Henry, P.S., Fiehn, O., and de Crécy-Lagard, V., Metabolite damage and metabolite damage control in plants, Ann. Rev. Plant. Biol., 2016, vol. 67, pp. 131–152.CrossRefGoogle Scholar
  45. 45.
    Hare, D.J. and Double, K.L., Iron and dopamine: a toxic couple, Brain, 2016, vol. 139, no. 4, pp. 1026–1035.CrossRefPubMedGoogle Scholar
  46. 46.
    Harman, D., Aging: a theory based on free radical and radiation chemistry, J. Gerontol., 1956, vol. 11, pp. 298–300.CrossRefPubMedGoogle Scholar
  47. 47.
    Harman, D., Free radical theory of aging: effect of free radical reaction inhibitors on the mortality rate of male LAF mice, J. Gerontol., 1968, vol. 23, pp. 476–482.CrossRefPubMedGoogle Scholar
  48. 48.
    Harman, D., The free radical theory of aging, Antioxid. Redox Signaling, 2003, vol. 5, pp. 557–561.CrossRefGoogle Scholar
  49. 49.
    Hawkes, K., Smith, K.R., and Blevins, J.K., Human actuarial aging increases faster when back ground death rates are lower: a consequence of differential heterogeneity?, Evolution, 2012, vol. 66, pp. 103–114.CrossRefPubMedGoogle Scholar
  50. 50.
    Hoffman, J.M., Tran, V., Wachtman, L.M., et al., A longitudinal analysis of the effects of age on the blood plasma metabolome in the common marmoset, Callithrix jacchus, Exp. Gerontol., 2016, vol. 76, pp. 17–24.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hofmann, J.W., Zhao, X., De Cecco, M., et al., Reduced expression of MYC increases longevity and enhances healthspan, Cell, 2015, vol. 160, pp. 477–488.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hong, S.Y., Ng, L.V., Ng, L.F., et al., The role of mitochondrial non-enzymatic protein acylation in ageing, PLoS One, 2016, vol. 11, no. 12, p. e0168752.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Jasienska, G., Ellison, P.V., Galbarczyk, A., et al., Apolipoprotein E (ApoE) polymorphism is related to differences in potential fertility in women: a case of antagonistic pleiotropy?, Proc. R. Soc. B, 2015, vol. 282, art. ID. 20142395.
  54. 54.
    Johnson, S.C., Dong, X., Vijg, J., and Suh, Y., Genetic evidence for common pathways in human age-related diseases, Aging Cell, 2015, vol. 14, pp. 809–817.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kalapos, M.P., The tandem of free radicals and methylglyoxal, Chem.-Biol. Interact., 2008, vol. 171, pp. 251–271.CrossRefPubMedGoogle Scholar
  56. 56.
    Kaushik, S. and Cuervo, A.M., Proteostasis and aging, Nat. Med., 2015, vol. 21, pp. 1406–1415.CrossRefPubMedGoogle Scholar
  57. 57.
    Keller, M.A., Kampjut, D., Harrison, S.A., and Ralser, M., Sulfate radicals enable a non-enzymatic Krebs cycle precursor, Nat. Ecol. Evol., 2017, vol. 1, art. ID 0083. CrossRefPubMedCentralGoogle Scholar
  58. 58.
    Keller, M.A., Turchyn, A.V., and Ralser, M., Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Achaean ocean, Mol. Syst. Biol., 2014, vol. 10, no. 4.
  59. 59.
    Kennedy, S.R., Loeb, L.A., and Herr, A.J., Somatic mutations in aging, cancer and neurodegeneration, Mech. Ageing Dev., 2012, vol. 133, pp. 118–126.CrossRefPubMedGoogle Scholar
  60. 60.
    Kirkwood, T.B., Evolution of ageing, Nature, 1977, vol. 270, pp. 301–304.CrossRefPubMedGoogle Scholar
  61. 61.
    Kirkwood, T.B., Deciphering death: a commentary on Gompertz (1825) ‘On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies,’ Philos. Trans. R. Soc., B, 2015, vol. 370, no. 1666.
  62. 62.
    Kita, K., Kawashima, Y., Makino, R., et al., Detection of two types of glycated tryptophan compounds in the plasma of chickens fed tryptophan excess diets, J. Poultry Sci., 2013, vol. 50, pp. 138–142.CrossRefGoogle Scholar
  63. 63.
    Kowald, A. and Kirkwood, T.B., Can aging be programmed? A critical literature review, Aging Cell, 2016, vol. 15, pp. 986–998.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kuklinski, N.J., Berglund, E.C., Engelbreksson, J., and Ewing, A.G., Determination of salsolinol, norsalsolinol, and twenty-one biogenic amines using micellar electrokinetic capillary chromatography–electrochemical detection, Electrophoresis, 2010, vol. 31, pp. 1886–1893.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Labbadia, J. and Morimoto, R.I., The biology of proteostasis in aging and disease, Ann. Rev. Biochem., 2015, vol. 84, pp. 435–464.CrossRefPubMedGoogle Scholar
  66. 66.
    Lade, S.J., Coelho, M., Tolić, I.M., and Gross, T., Fusion leads to effective segregation of damage during cell division: an analytical treatment, J. Theor. Biol., 2015, vol. 378, pp. 47–55.CrossRefPubMedGoogle Scholar
  67. 67.
    Lagunas-Rangel, F.A. and Chavez-Valencia, V., Learning of nature: the curious case of the naked mole rat, Mech. Ageing Dev., 2017, vol. 164, pp. 76–81.CrossRefPubMedGoogle Scholar
  68. 68.
    Lambeth, J.D., Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy, Free Radicals Biol. Med., 2007, vol. 43, pp. 332–347.CrossRefGoogle Scholar
  69. 69.
    Laron, Z., Kauli, R., Lapkina, L., and Werner, H., IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome, Mutat. Res., 2016, vol. 772, pp. 123–133.CrossRefGoogle Scholar
  70. 70.
    Laye, M.J., Tran, V., Jones, D.P., et al., The effects of age and dietary restriction on the tissue-specific metabolome of Drosophila, Aging Cell, 2015, vol. 14, pp. 797–808.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Le Bourg, E., Evolutionary theories of aging can explain why we age, Interdiscip. Top. Gerontol., 2014, vol. 39, pp. 8–23.CrossRefPubMedGoogle Scholar
  72. 72.
    Lerma-Ortiz, C., Jeffryes, J. G., Cooper, A.J.L., et al., ‘Nothing of chemistry disappears in biology’: the Top 30 damage-prone endogenous metabolites, Biochem. Soc. Trans., 2016, vol. 44, pp. 961–971.CrossRefPubMedGoogle Scholar
  73. 73.
    Li, C., Xu, X., Tao, Z., et al., Resveratrol derivatives: an updated patent review (2012–2015), Expert Opin. Ther. Pat., 2016, vol. 26, pp. 1189–1200.CrossRefPubMedGoogle Scholar
  74. 74.
    Limpert, E. and Stahel, W.A., The log-normal distribution, Significance, 2017, vol. 14, pp. 8–9.Google Scholar
  75. 75.
    Linster, P.L., van Schaftingen, E., and Hanson, A.D., Metabolite damage and its repair or pre-emption, Nat. Chem. Biol., 2013, vol. 9, pp. 72–80.CrossRefPubMedGoogle Scholar
  76. 76.
    Lippincott, J. and Apostol, I., Carbamylation of cysteine: a potential artifact in peptide mapping of hemoglobins in the presence of urea, Anal. Biochem., 1999, vol. 267, pp. 57–64.CrossRefPubMedGoogle Scholar
  77. 77.
    Longo, V.D., Antebi, A., Bartke, A., et al., Interventions to slow aging in humans: Are we ready?, Aging Cell, 2015, vol. 14, pp. 497–510.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Lutz, T.A. and Meyer, U., Amylin at the interface between metabolic and neurodegenerative disorders, Front. Neurosci., 2015, vol. 9.
  79. 79.
    Madimenos, F.P., An evolutionary and life-history perspective on osteoporosis, Ann. Rev. Anthropol., 2015, vol. 44, pp. 189–206.CrossRefGoogle Scholar
  80. 80.
    Manini, P., Napolitano, A., and d’Ischia, M., Reactions of d-glucose with phenolic amino acids: further insights into the competition between Maillard and Pictet–Spengler condensation pathways, Carbohydr. Res., 2005, vol. 340, pp. 2719–2727.CrossRefPubMedGoogle Scholar
  81. 81.
    Matafome, P., Rodrigues, V., Sena, C., and Seiça, R., Methylglyoxal in metabolic disorders: facts, myths, and promises, Med. Res. Rev., 2016, vol. 37, pp. 368–403.CrossRefPubMedGoogle Scholar
  82. 82.
    Matura, S., Prvulovic, D., Hartmann, D., et al., Age-related effects of the apolipoprotein E gene on brain function, J. Alzheimer’s Dis., 2016, vol. 52, pp. 317–331.CrossRefGoogle Scholar
  83. 83.
    McCann, S.M., Mastronardi, C., De Laurentiis, A., and Rettori, V., The nitric oxide theory of aging revisited, Ann. N.Y. Acad. Sci., 2005, vol. 1057, pp. 64–84.CrossRefPubMedGoogle Scholar
  84. 84.
    Monnier, V.M., Genuth, S., and Sell, D.R., The pecking order of skin Advanced Glycation Endproducts (AGEs) as long-term markers of glycemic damage and risk factors for micro- and subclinical macrovascular disease progression in Type 1 diabetes, Glycoconjugate J., 2016, vol. 33, pp. 569–579.CrossRefGoogle Scholar
  85. 85.
    Monnier, V.M., Mustata, G.V., Biemel, K.L., et al., Cross-linking of the extracellular matrix by the Maillard reaction in aging and diabetes: An update on “a Puzzle Nearing Resolution,” Ann. N.Y. Acad. Sci., 2005, vol. 1043, pp. 533–544.CrossRefPubMedGoogle Scholar
  86. 86.
    Mostafa, A.A., Randell, E.W., Vasdev, S.C., et al., Plasma protein advanced glycation end products, carboxymethyl cysteine, and carboxyethyl cysteine, are elevated and related to nephropathy in patients with diabetes, Mol. Cell. Biochem., 2007, vol. 302, pp. 35–42.CrossRefPubMedGoogle Scholar
  87. 87.
    Naudí, A., Jové, M., Ayala, V., et al., Non-enzymatic modification of aminophospholipids by carbonyl-amine reactions, Int. J. Mol. Sci., 2013, vol. 14, pp. 3285–3313.Google Scholar
  88. 88.
    Newman, S.J. and Easteal, S., Global patterns of human ageing, bioRxiv, 2017.
  89. 89.
    Olshansky, S.J. and Carnes, B.A., Ever since Gompertz, Demography, 1997, vol. 34, pp. 1–15.CrossRefPubMedGoogle Scholar
  90. 90.
    Oppelt, S.A., Sennott, E.M., and Tolan, D.R., Aldolase-B knockout in mice phenocopies hereditary fructose intolerance in humans, Mol. Genet. Metab., 2015, vol. 114, pp. 445–450.CrossRefPubMedGoogle Scholar
  91. 91.
    Orosz, F., Oláh, J., and Ovádi, J., Triosephosphate isomerase deficiency: new insights into an enigmatic disease, Biochim. Biophys. Acta, Mol. Basis Dis., 2009, vol. 1792, pp. 1168–1174.CrossRefGoogle Scholar
  92. 92.
    Pamplona, R., Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity, Biochim. Biophys. Acta, Bioenerg., 2008, vol. 1777, pp. 1249–1262.CrossRefGoogle Scholar
  93. 93.
    Plucinska, K., Crouch, B., Koss, D., et al., Knock-in of human BACE1 cleaves murine APP and reiterates Alzheimer-like phenotypes, J. Neurosci., 2014, vol. 34, pp. 10710–10728.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Rabbani, N., Xue, M., and Thornalley, P.J., Dicarbonyls and glyoxalase in disease mechanisms and clinical therapeutics, Glycoconjugate J., 2016, vol. 33, pp. 513–525.CrossRefGoogle Scholar
  95. 95.
    Rabbani, N., Xue, M., and Thornalley, P.J., Methylglyoxal-induced dicarbonyl stress in aging and disease: first steps towards glyoxalase 1-based treatments, Clin. Sci., 2016, vol. 130, pp. 1677–1696.CrossRefPubMedGoogle Scholar
  96. 96.
    Robins, C. and Conneely, K.N., Testing evolutionary models of senescence: traditional approaches and future directions, Hum. Genet., 2014, vol. 133, pp. 1451–1465.CrossRefPubMedGoogle Scholar
  97. 97.
    Rose, M.R., Life history evolution with antagonistic pleiotropy and overlapping generations, Theor. Popul. Biol., 1985, vol. 28, pp. 342–358.CrossRefGoogle Scholar
  98. 98.
    Rose, M.R. and Graves, J.L., Jr., What evolutionary biology can do for gerontology, J. Gerontol., 1989, vol. 44, pp. B27–B29.CrossRefPubMedGoogle Scholar
  99. 99.
    Ruby, J.G., Smith, M., and Buffenstein, R., Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age, eLife, 2018, vol. 7.
  100. 100.
    Rusted, J.M., Evans, S.L., King, S.L., et al., APOE ε4 polymorphism in young adults is associated with improved attention and indexed by distinct neural signatures, NeuroImage, 2013, vol. 65, pp. 364–373.CrossRefPubMedGoogle Scholar
  101. 101.
    Sadowska-Bartosz, I. and Bartosz, G., Effect of antioxidants supplementation on aging and longevity, Biomed. Res. Int., 2014, vol. 2014, p. 17. CrossRefGoogle Scholar
  102. 102.
    Schaible, R., Scheuerlein, A., Dańko, M.J., et al., Constant mortality and fertility over age in Hydra, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, pp. 15701–15706.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Schenkelaars, Q., Tomczyk, S., Wenger, Y., et al., Hydra, a model system for deciphering the mechanisms of aging and resistance to aging, bioRxiv, 2017.
  104. 104.
    Schosserer, M., Grillari, J., and Breitenbach, M., The dual role of cellular senescence in developing tumors and their response to cancer therapy, Front. Oncol., 2017, vol. 7, no. 278.
  105. 105.
    Schreiber, G. and Richardson, S.J., The evolution of gene expression, structure and function of transthyretin, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 1997, vol. 116, pp. 137–160.CrossRefGoogle Scholar
  106. 106.
    Seifermann, M. and Epe, B., Oxidatively generated base modifications in DNA: Not only carcinogenic risk factor but also regulatory mark?, Free Radicals Biol. Med., 2017, vol. 107, pp. 258–265.CrossRefGoogle Scholar
  107. 107.
    Shen, X.-M., Zhang, F., and Dryhurst, G., Oxidation of dopamine in the presence of cysteine: Characterization of new toxic products, Chem. Res. Toxicol., 1997, vol. 10, pp. 147–155.CrossRefPubMedGoogle Scholar
  108. 108.
    Sipe, J.D., Benson, M.D., Buxbaum, J.N., et al., Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines, Amyloid, 2016, vol. 23, pp. 209–213.CrossRefPubMedGoogle Scholar
  109. 109.
    Susilo, R. and Rommelspacher, H., Formation of a β-carboline (1,2,3,4-tetrahydro-l-methyl-β-carboline-1-carboxylic acid) following intracerebroventricular injection of tryptamine and pyruvic acid, Naunyn-Schmiedeberg’s Arch. Pharmacol., 1987, vol. 335, pp. 70–76.CrossRefGoogle Scholar
  110. 110.
    Taghavi, F., Habibi-Rezaei, M., Amani, M., et al., The status of glycation in protein aggregation, Int. J. Biol. Macromol., 2016, vol. 100, pp. 67–74.CrossRefPubMedGoogle Scholar
  111. 111.
    Thiele, I., Swainston, N., Fleming, R.M.T., et al., A community-driven global reconstruction of human metabolism, Nat. Biotechnol., 2013, vol. 31, pp. 419–425.CrossRefPubMedGoogle Scholar
  112. 112.
    Ungewitter, E. and Scrable, H., Antagonistic pleiotropy and p53, Mech. Ageing Dev., 2009, vol. 130, pp. 10–17.CrossRefPubMedGoogle Scholar
  113. 113.
    Vaiserman, A. and Lushchak, O., Implementation of longevity-promoting supplements and medications in public health practice: achievements, challenges and future perspectives, J. Transl. Med., 2017, vol. 15, no. 1, p. 160. CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    van Exel, E., Koopman, J.J.E., Bodegom, D.V., et al., Effect of APOE ε4 allele on survival and fertility in an adverse environment, PLoS One, 2017, vol. 12, no. 7, p. e0179497.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Vaupel, J. W., Carey, J.R., Christensen, K., et al., Biodemographic trajectories of longevity, Science, 1998, vol. 280, pp. 855–860.CrossRefPubMedGoogle Scholar
  116. 116.
    Vedel, S., Nunns, H., Košmrlj, A., et al., Asymmetric damage segregation constitutes an emergent population-level stress response, Cell Syst., 2016, vol. 3, pp. 187–198.CrossRefPubMedGoogle Scholar
  117. 117.
    Vicente, M.H., El-Agnaf, O.M.A., and Outeiro, T.F., Glycation in Parkinson’s disease and Alzheimer’s disease, Mov. Disord., 2016, vol. 31, pp. 782–790.CrossRefGoogle Scholar
  118. 118.
    Williams, G.P., Pleiotropy, natural selection and the evolution of senescence, Evolution, 1957, vol. 11, pp. 398–411.CrossRefGoogle Scholar
  119. 119.
    Wishart, D.S., Mandal, R., Stanislaus, A., et al., Cancer metabolomics and the human metabolome database, Metabolites, 2016, vol. 6.
  120. 120.
    Wlodek, L., Wrobel, M., and Czubak, J., Transamination and transsulphuration of L-cysteine in Ehrlich ascites tumor cells and mouse liver. The nonenzymatic reaction of L-cysteine with pyruvate, Int. J. Biochem., 1993, vol. 25, pp. 107–112.CrossRefPubMedGoogle Scholar
  121. 121.
    Xie, B., Lin, F., Ullah, K., et al., A newly discovered neurotoxin ADTIQ associated with hyperglycemia and Parkinson’s disease, Biochem. Biophys. Res. Commun., 2015, vol. 459, pp. 361–366.CrossRefPubMedGoogle Scholar
  122. 122.
    Yin, D. and Chen, K., The essential mechanisms of aging: Irreparable damage accumulation of biochemical side-reactions, Exp. Gerontol., 2005, vol. 40, pp. 455–465.CrossRefPubMedGoogle Scholar
  123. 123.
    Zimniak, P., Relationship of electrophilic stress to aging, Free Radicals Biol. Med., 2011, vol. 51, pp. 1087–1105.CrossRefGoogle Scholar
  124. 124.
    Zimniak, P., What is the proximal cause of aging?, Front. Genet., 2012, vol. 3, no. 189.
  125. 125.
    Zucca, F.A., Segura-Aguilar, J., Ferrari, E., et al., Interactions of iron, dopamine, and neuromelanin pathways in brain aging and Parkinson’s disease, Prog. Neurobiol., 2015, vol. 155, pp. 96–119.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Petrov National Medical Research Center of OncologySt. PetersburgRussia

Personalised recommendations