Advertisement

Advances in Gerontology

, Volume 8, Issue 4, pp 315–319 | Cite as

Lipofuscin and Mitolipofuscin in the Organs of Young and Adult Rats

  • A. V. Chaplygina
  • N. L. VekshinEmail author
Article
  • 3 Downloads

Abstract

The levels of lipofuscin (aging pigment) were compared in four organs (liver, kidney, heart, brain) of young and adult rats, as well as in the suspension of hepatic mitochondria. Mitochondrial lipofuscin—mitolipofuscin fluorescing in the blue region—was seen to make the major contribution to hepatic lipofuscin. It is clear that mitolipofuscin also makes a significant contribution in other organs. The age-related accumulation of lipofuscin was shown to occur in all rat organs, but in the brain least of all. In addition to fluorescent lipofuscin, non-fluorescent protein aggregates were found in all organs, mostly in the heart. A considerable portion is covalently cross-linked aggregates not destroyed by detergents. Their number also increases with age.

Keywords:

aging lipofuscin mitochondria protein aggregates protein–protein binding fluorescence spectroscopy 

Notes

REFERENCES

  1. 1.
    Anisimov, V.N., Molekulyarnye i fiziologicheskie mekhanizmy stareniya (Molecular and Physiological Mechanisms of Aging), St. Petersburg: Nauka, 2003, pp. 52–165.Google Scholar
  2. 2.
    Vekshin, N.L., Frolova, M.S., Kovalev, V.I., and Begunova, E.A., Tyndall’s hypochromism in suspensions, Biophysics (Moscow), 2015, vol. 60, no. 1, pp. 101–106.CrossRefGoogle Scholar
  3. 3.
    Efimov, A.A. and Maslyakova, G.N., The role of lipofuscin in involutive and pathological processes, Sarat. Nauchno-Med. Zh., 2009, no. 1, pp. 111–115.Google Scholar
  4. 4.
    Zairat’yants, O.V., Boikova, S.P., and Dorofeev, D.A., Patologicheskaya anantomiya: Atlas (Pathological Anatomy: Atlas), Moscow: GEOTAR-Media, 2010.Google Scholar
  5. 5.
    Kishkun, A.A., Biologicheskii vozrast i starenie: vozmozhnosti opredeleniya i puti korrektsii (Biological Age and Aging: Determination and Correction), Moscow: GEOTAR-Media, 2008.Google Scholar
  6. 6.
    Koltover, V.K., Antioxidant biomedicine: from free radical chemistry to systems biology mechanisms, Russ. Chem. Bull., 2010, vol. 59, no. 1, pp. 37–42.CrossRefGoogle Scholar
  7. 7.
    Medvedev, A.V., Moskalev, D.A., Kaurov, A.A., et al., System scheme of human aging, Klin. Gerontol., 2010, vol. 16, nos. 9–10, p. 52.Google Scholar
  8. 8.
    Frolova, M.S., Surin, A.M., Braslavski, A.V., and Vekshin, N.L., Degradation of mitochondria to lipofuscin upon heating and illumination, Biophysics (Moscow), 2015, vol. 60, no. 6, pp. 934–939.CrossRefGoogle Scholar
  9. 9.
    Harrison, T.R., Harrison’s Principles of Internal Medicine, New York: McGraw-Hill, 1991, 12th ed.Google Scholar
  10. 10.
    Chaplygina, A.V. and Vekshin, N.L., Postmitolipofuscin and thermolipofuscin in organ homogenates of rat, Biofizika, 2018, vol. 63 (in press).Google Scholar
  11. 11.
    Shubik, V.M., Alishev, N.V., and Drabkin, B.A., Stress–immunity–health: the problem of accelerated aging of veterans of special-risk units, Usp. Gerontol., 2010, vol. 23, no. 1, pp. 49–55.Google Scholar
  12. 12.
    Azarian, S.M., McLeod, I., Lillo, C., et al., Proteomic analysis of mature melanosomes from the retinal pigmented epithelium, Proteome Res., 2006, vol. 5, pp. 521–529.CrossRefGoogle Scholar
  13. 13.
    Boellaard, J.W., Harzer, K., and Schlote, W., Variations of the ultrastructure of neuronal lipofuscin during childhood and adolescence in the human Ammon’s horn, Ultrastruct. Pathol., 2006, vol. 30, pp. 387–391.CrossRefGoogle Scholar
  14. 14.
    Brunk, U.T. and Terman, A., Lipofuscin: mechanisms of agerelated accumulation and influence on cell function, Free Radical Biol. Med., 2002, vol. 33, pp. 611–619.CrossRefGoogle Scholar
  15. 15.
    Brunk, U.T. and Terman, A., The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis, Eur. J. Biochem., 2002, vol. 269, pp. 1996–2002.CrossRefGoogle Scholar
  16. 16.
    Davies, K.J.A., The oxygen paradox, oxidative stress, and ageing, Arch. Biochem. Biophys., 2016, vol. 595, pp. 28–32.CrossRefGoogle Scholar
  17. 17.
    Gross, V.S., Greenberg, H.K., Baranov, S.V., et al., Isolation of functional mitochondria from rat kidney and skeletal muscle without manual homogenization, Anal. Biochem., 2011, vol. 418, no. 2, pp. 213–223.CrossRefGoogle Scholar
  18. 18.
    Höhn, A. and Grune, T., Lipofuscin: formation, effects and role of macroautophagy, Redox Biol., 2013, vol. 1, pp. 140–144.Google Scholar
  19. 19.
    Jung, T., Bader, N., and Grune, T., Lipofuscin: formation, distribution, and metabolic consequences, Ann. N.Y. Acad. Sci., 2007, vol. 1119, pp. 97–111.CrossRefGoogle Scholar
  20. 20.
    Schutt, F., Ueberle, B., Schnölzer, M., et al., Proteome analysis of lipofuscin in human retinal pigment epithelial cells, FEBS Lett., 2002, vol. 528, pp. 217–221.CrossRefGoogle Scholar
  21. 21.
    Terman, A. and Brunk, U.T., Lipofuscin: mechanisms of formation and increase with age, APMIS, 1998, vol. 106, pp. 265–276.CrossRefGoogle Scholar
  22. 22.
    Vekshin, N.L., Photonics of Biopolymers, Berlin: Springer-Verlag, 2002, pp. 36–40.CrossRefGoogle Scholar
  23. 23.
    Warburton, S., Southwick, K., Hardman, R.M., et al., Examining the proteins of functional retinal lipofuscin using proteomic analysis as a guide for understanding its origin, Mol. Vision, 2005, vol. 11, pp. 1122–1134.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Cell Biophysics, Russian Academy of SciencesPushchinoRussia

Personalised recommendations