Advertisement

Advances in Gerontology

, Volume 8, Issue 4, pp 347–354 | Cite as

Correlations of the Parameters of Carbohydrate Metabolism and Saturated Fatty Acids in the Blood Serum of Elderly People

  • F. A. BichkaevaEmail author
  • N. I. Volkova
  • A. A. Bichkaev
  • T. V. Tretykova
  • O. S. Vlasova
  • E. V. Nesterova
  • B. A. Shengof
  • N. F. Baranova
Article
  • 4 Downloads

Abstract

The study involves 106 elderly subjects (61–74 years old) living in the Arctic; 42 of them are residents of the Subarctic region (SR) and 64, of the Arctic region (AR). The contents of saturated fatty acids (SFAs) comprising short chain (SCFA), medium chain (MCFA), and long chain (LCFA) fatty acids, are determined by gas liquid chromatography of the blood serum. The parameters of the carbohydrate metabolism are assessed by spectrophotometry. Correlation analysis demonstrates the absence of statistically significant correlations of glucose, lactate, and pyruvate levels with the contents of SCFAs, MCFAs, and LCFAs (r = 0.2–0.29, p = 0.08–0.786) among the examined elderly SR residents compared with the AR residents, who show lower rates of excess glucose and lactate and lower rates of deficient pyruvate. On the background of higher excess glucose and deficiency rates, the examined AR cohort shows the strongest correlations with LCFAs (hexadecanoic, heptadecanoic, octadecanoic, behenic, and tricosanoic acids), somewhat more moderate correlations with MCFAs (tetradecanoic and pentadecanoic acids) and SCFAs (pelargonic acid), correlations of pyruvate deficiency with MCFAs (dodecanoic and tetradecanoic acids and total MCFA content) and SCFAs (decanoic acid), and correlations of an insignificant decrease in the rate of excess lactate and lactate/pyruvate with LCFAs (hexadecanoic, heptadecanoic, octadecanoic, and tricosanoic acids), MCFAs (dodecanoic and tridecanoic acids), and SCFAs (hexanoic and caprylic acids).

Keywords:

saturated fatty acids short-chain fatty acids medium-chain fatty acids long-chain fatty acids glucose lactate pyruvate body mass index age Subarctic region Arctic region intersystem reactions 

Notes

REFERENCES

  1. 1.
    Amelyushkina, V.A., Aripovskii, A.V., Titov, V.N., et al., Fatty acids in blood plasma and erythrocytes in the glucose tolerance test, Klin. Lab. Diagn., 2014, vol. 59, no. 4, pp. 4–11.Google Scholar
  2. 2.
    Amelyushkina, V.A., Rozhkova, T.A., and Titov, V.N., Palmitin and olein variants of fatty acid metabolism. Exogenous syndrome of insulin resistance in the impairment of the biological function of nutrition (trophology), Klin. Lab. Diagn., 2013, no. 7, pp. 21–38.Google Scholar
  3. 3.
    Anisimov, V.N., Molekulyarnye i fiziologicheskie mekhanizmy stareniya (Molecular and Physiological Mechanisms of Aging), St. Petersburg: Nauka, 2008, vol. 2.Google Scholar
  4. 4.
    Bichkaeva, F.A., Endokrinnaya regulyatsiya metabolicheskikh protsessov u cheloveka na Severe (Endocrine Regulation of Metabolic Processes in Humans in the North), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2008.Google Scholar
  5. 5.
    Efremov, L.I. and Komissarenko, I.A., Metabolic continuum and polymorbidity in geriatrics, Eksper. Klin. Gastroenterol., 2014, vol. 106, no. 6, pp. 4–7.Google Scholar
  6. 6.
    Konev, Yu.V., Kuznetsov, O.O., Li, E.D., and Trubnikova, I.A., Specific nutrition of people in elderly and senile age, Ross. Med. Zh., 2009, vol. 17, no. 2, pp. 145–149.Google Scholar
  7. 7.
    Kotkina, T.I., Titov, V.N., and Parkhimovich, R.M., Other concepts about β-oxidation of fatty acids in peroxisomes, mitochondria and ketone bodies. Diabetic, acidotic coma as acute deficiency of acetyl-CoA and ATP, Klin. Lab. Diagn., 2014, no. 3, pp. 15–23.Google Scholar
  8. 8.
    Nasledov, A.D., SPSS 15.0. Professional’nyi statisticheskii ananliz dannykh (SPSS 15.0.: Professional Statistical Data Analysis), St. Petersburg, 2008.Google Scholar
  9. 9.
    Osipenko, A.N., Akulich, N.V., and Klishevich, F.N., Fatty acids of blood and their interrelations in atherosclerosis, Tavrich. Med.-Biol. Vestn., 2012, vol. 15, no. 3–2, p. 59.Google Scholar
  10. 10.
    Sumerkina, V.A., Chulkov, V.S., Ozhigina, E.V., and Toropova, L.R., Assessment of adipokine level in patients with metabolic syndrome and isolated abdominal obesity, Klin. Lab. Diagn., 2015, no. 9, pp. 9–15.Google Scholar
  11. 11.
    Tereshina, E.V., The role of fatty acids in the development of age-related oxidative stress: hypothesis, Usp. Gerontol., 2007, vol. 20, no. 1, pp. 59–65.Google Scholar
  12. 12.
    Titov, V.N. and Lisitsyn, D.M., Zhirnye kisloty. Fizicheskaya khimiya, biologiya i meditsina (Fatty Acids: Physical Chemistry, Biology, and Medicine), Moscow: Triada, 2006.Google Scholar
  13. 13.
    Titov, V.N., Medium-chain fatty acids: food content, physiology, metabolic features, and clinical use, Vopr. Pitan., 2012, vol. 81, no. 6, pp. 27–36.Google Scholar
  14. 14.
    Tkachev, A.V., Boiko, E.R., and Gubkina, Z.D., Endokrinnaya sistema i obmen veshchestv u cheloveka na Severe (Endocrine System and Metabolism of a Man in the North), Syktyvkar: Komi Nauch. Tsentr, Ural. Otd., Ross. Akad. Nauk, 1992.Google Scholar
  15. 15.
    Bjursell, M., Admyre, T., Goransson, M., et al., Improved glucose control and reduced body fat mass in free fatty acid receptor 2-dericient mice fed a high-fat diet, Am. J. Physiol.-Endocrinol. Metab., 2011, vol. 300, no. 1, pp. 211–220.CrossRefGoogle Scholar
  16. 16.
    Bielohuby, M., Menhofer, D., Kirchner, H., et al., Induction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein, Am. J. Physiol.-Endocrinol. Metab., 2011, vol. 300, no. 1, pp. 65–76.CrossRefGoogle Scholar
  17. 17.
    Ebbesson, S.O., Risica, P.M., Ebesson, L.O., et al., Omega-3 fatty acids improve glucose tolerance and components of the metabolic syndrome in Alaskan Eskimos: the Alaska Siberia project, Int. J. Circumpolar Health, 2005, vol. 64, no. 4, pp. 396–408.CrossRefGoogle Scholar
  18. 18.
    Min, Y., Lowy, C., Islam, S., et al., Relationship between red cell membrane fatty acids and adipokines in individuals with varying insulin sensitivity, Eur. J. Clin. Nutr., 2011, vol. 65, no. 6, pp. 690–695.CrossRefGoogle Scholar
  19. 19.
    Stefan, N., Kantartzis, K., Celebi, N., et al., Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans, Diabetes Care, 2010, vol. 33, pp. 405–407.CrossRefGoogle Scholar
  20. 20.
    Thorseng, T., Witte, D.R., Vistisen, D., et al., The association between n-3 fatty acids in erythrocyte membranes and insulin resistance: the Inuit Health in Transition Study, Int. J. Circumpolar Health, 2009, vol. 68, no. 4, pp. 327–336.CrossRefGoogle Scholar
  21. 21.
    Folch, J., Less, M., and Sloane Stanley, G.H., A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem., 1957, vol. 226, pp. 497–509.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • F. A. Bichkaeva
    • 1
    Email author
  • N. I. Volkova
    • 1
    • 2
  • A. A. Bichkaev
    • 1
    • 2
  • T. V. Tretykova
    • 1
  • O. S. Vlasova
    • 1
  • E. V. Nesterova
    • 1
  • B. A. Shengof
    • 1
    • 2
  • N. F. Baranova
    • 1
  1. 1.Institute of Environmental Physiology, Federal Center for Integrated Arctic Research, Russian Academy of SciencesArkhangelskRussia
  2. 2.Lomonosov Northern (Arctic) Federal UniversityArkhangelskRussia

Personalised recommendations