Advertisement

Advances in Gerontology

, Volume 8, Issue 4, pp 292–297 | Cite as

The Effect of Cryopreserved Cord Blood Nucleated Cells on Pathological Processes in the Progressive Aging of the Brain (Experimental Study)

  • V. S. AidarovaEmail author
  • V. G. Babijchuk
  • I. I. Lomakin
  • O. V. Kudokotseva
  • G. A. Babijchuk
Article
  • 2 Downloads

Abstract

This work presents data on morphometric indices of the vascular bed and brain substance of spontaneously hypertensive SHR rats, which may be considered evidence of the developing pathological brain aging processes in these animals. Chronic alcohol intoxication aggravates the neurodegeneration, significantly reducing the indices of the neuroglial index, the number of functioning vessels and activating the LPO processes. A single intraperitoneal administration of cryopreserved human cord blood nucleated cells in a dose of (1–5) × 107/kg promoted the regeneration of neurocells, the stimulation of angiogenesis and an increased level and quality of neurotissue metabolism, reducing the signs of dystrophic, destructive and pathologically altered compensatory adaptive processes in the rat’s brain as a result of the restoration of its microhemocirculation and cytoarchitecture.

Keywords:

progressive aging of brain arterial hypertension chronic alcohol intoxication cord blood 

Notes

REFERENCES

  1. 1.
    Aidarova, V.S., Kudokotseva, O.V., Lomakin, I.I., and Babijchuk, G.A., Use the cord blood cells in neurology, Probl. Kriobiol. Kriomed., 2016, vol. 26, no. 2, pp. 103–115.Google Scholar
  2. 2.
    Babijchuk, L.A., Zubov, P.M., Ryazantsev, V.V., et al., Cord blood as alternative source of stem cells for regenerative medicine: new approaches to the problem of cryopreservation, Bukovins’skii Med. Visn., 2009, vol. 13, no. 4, pp. 23–26.Google Scholar
  3. 3.
    Bakhtiyarova, Sh.K., Kapysheva, U.N., and Zhaksymov, B.I., The intensity of lipid peroxidation in the homogenate of the nervous tissue after the introduction of allogenic mononuclear cells, Mezhdunar. Zh. Prikl. Fundam. Issled., 2015, no. 9, pp. 305–307.Google Scholar
  4. 4.
    Grishchenko, V.I., Koval’, G.A., Petrenko, A.Yu., et al., Regenerativno-plasticheskaya terapiya alkogol’nykh vistseropatii (Regenerative-Plastic Therapy of Alcoholic Visceropathies), Kyiv: Naukova Dumka, 2010.Google Scholar
  5. 5.
    Gusev, E.I., Konovalov, A.N., and Skvortsova, V.I., Nevrologiya: Natsional’noe rukovodstvo (Neurology: National Guide), Moscow: Vseross. O-vo Nevrol., 2015.Google Scholar
  6. 6.
    Lebedinets, V.V., Ovsyannikov, S.E., Ostankov, M.V., et al., Correction of metabolic disorders by the introduction of cryopreserved cord blood in the experimental model of ischemic stroke, Nauch. Ved. Belgorod. Gos. Univ., Ser. Med., Farm., 2015, vol. 31, no. 16, pp. 156–162.Google Scholar
  7. 7.
    Nasonova, T.I. and Sazonova, I.V., Brain aging: neurohepoprotector therapy, Mizhnar. Nevrol. Zh., 2014, vol. 67, no. 5, pp. 79–85.Google Scholar
  8. 8.
    Pristrom, M.S., Pristrom, S.L., and Semenenkov, I.I., Physiological and premature aging: a modern view of the problem, Med. Nov., 2015, no. 2, pp. 36–45.Google Scholar
  9. 9.
    Sokolova, I.B., Ryzhak, G.A., and Khavinson, V.Kh., Functional cumulation of influence of vascular peptide bioregulator on microcirculation in the brain cortex of spontaneously hypertensive rats, Adv. Gerontol., 2018, vol. 8, no. 2, pp. 158–162.CrossRefGoogle Scholar
  10. 10.
    Sokolova, I.B., Sergeev, I.V., Fedotova, O.R., Melnikova, N.N., and Dvoretsky, D.P., Age-related changes in microcirculation in the cortex of hypertonic rats, Adv. Gerontol., 2017, vol. 7, no. 1, pp. 51–55.CrossRefGoogle Scholar
  11. 11.
    Solov’eva, A.O., Poveshchenko, A.F., Poveshchenko, O.V., et al., Migration and distribution of bone marrow and spleen donor cells into lymphoid and non-lymphoid organs at different times after in vivo transplantation into CBA mice, Byull. Sib. Otd., Ross. Akad. Med. Nauk, 2013, vol. 33, no. 4, pp. 35–41.Google Scholar
  12. 12.
    Yarygin, K.N., Semchenko, V.V., Ereniev, S.I., et al., Regenerativnaya biologiya i meditsina. Kniga 2. Kletochnye tekhnologii v terapii boleznei nervnoi sistemy (Regenerative Biology and Medicine, Book 2: Cell Technologies in Therapy of Diseases of Nervous System), Omsk: Omsk. Obl. Tipogr., 2015.Google Scholar
  13. 13.
    Castellano, J.M., Mosher, K.I., Abbey, R.J., et al., Human umbilical cord plasma proteins revitalize hippocampal function in aged mice, Nature, 2017, vol. 544, no. 7651, pp. 488–492.CrossRefGoogle Scholar
  14. 14.
    Cell Therapy against Cerebral Stroke. Comprehensive Reviews for Translational Researches and Clinical Trials, Houkin, K., Abe, K., and Kuroda, S., Eds., New York: Springer-Verlag, 2017.Google Scholar
  15. 15.
    Cell Therapy for Brain Injury, Hess, D.C., Ed., New York: Springer-Verlag, 2015.Google Scholar
  16. 16.
    Chen, J., Sanberg, P.R., Li Y., et al., Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. http://stroke.ahajournals.org/. Accessed February 5, 2018.Google Scholar
  17. 17.
    Animal Models of Dementia, De Deyn, P.P. and van Dam, D., Eds., New York: Springer-Verlag, 2011.Google Scholar
  18. 18.
    Faraci, F.M., Protecting against vascular disease in brain, Am. J. Physiol. Heart Circ. Physiol., 2011, vol. 300, no. 5, pp. H1566–H1582.CrossRefGoogle Scholar
  19. 19.
    González-Reimers, E., Santolaria-Fernández, F., Martín-González, M.C., et al., Alcoholism: a systemic proinflammatory condition, World J. Gastroenterol., 2014, vol. 20, no. 40, pp. 14660–14671.Google Scholar
  20. 20.
    Yousef, H., Czupalla, C.J., Lee, D., et al., Aged blood inhibits hippocampal neurogenesis and activates microglia through VCAM1 at the blood-brain barrier, Preprint of Stanford University, 2018. http://dx.doi.org/ 10.1101/242198. Accessed January 16, 2018.Google Scholar
  21. 21.
    Nakanishi, K., Sato, Y., Mizutani, Y., et al., Rat umbilical cord blood cells attenuate hypoxic–ischemic brain injury in neonatal rats, Sci. Rep., 2017, vol. 7, art. ID 44111. doi 10.1038/srep44111CrossRefGoogle Scholar
  22. 22.
    Studies on Experimental Models (Oxidative Stress in Applied Basic Research and Clinical Practice), Basu, S. and Wiklund, L., Eds., New York: Springer-Verlag, 2011.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. S. Aidarova
    • 1
    Email author
  • V. G. Babijchuk
    • 1
  • I. I. Lomakin
    • 1
  • O. V. Kudokotseva
    • 1
  • G. A. Babijchuk
    • 1
  1. 1.Institute for Problems of Cryobiology and Cryomedicine of National Academy of Sciences of UkraineKharkovUkraine

Personalised recommendations