Advances in Gerontology

, Volume 6, Issue 2, pp 153–159 | Cite as

Age-related changes of angiomotin and endostatin content in human skin

  • N. N. Golubtsova
  • O. V. Vasilieva
  • V. V. Petrov
  • F. N. Filippov
  • A. G. Gunin
Article
  • 10 Downloads

Abstract

Angiomotin- and endostatin-positive structures were studied by the indirect immunohistochemical method in the skin of human fetuses that died antenatally from different causes in the 20th to 40th weeks of pregnancy and in skin samples extracted during the autopsy of humans who died from different causes at ages from 1 day to 85 years. The cells of epidermis, the fibroblasts, sweat and sebaceous glands of the dermis, and the blood vessels had a positive reaction to angiomotin and endostatin. Considering the fundamental importance of angiomotin and endostatin for angiogenesis, we studied the content of these substances in the blood vessels. Angiomotin-positive blood vessels were detected in skin samples of humans of all ages. An agedependent decrease was found in the angiomotin content in blood vessels of the dermis; it was more strongly expressed in humans aged 61–85 years. Endostatin-positive blood vessels were detected in the skin samples of humans of all ages. An age-dependent increase in the endostatin content in blood vessels of the dermis was found. The change in the angiomotin and endostatin contents and the balance between these substances probably have a negative effect on the angiogenesis processes in human skin during aging.

Keywords

aging skin angiogenesis blood vessels angiomotin endostatin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gunin, A.G., Petrov, V.V., Vasilieva, O.V., and Golubtsova, N.N., Age-related changes of blood vessels in the human dermis, Adv. Gerontol., 2015, vol. 5, no. 2, pp. 65–71.CrossRefGoogle Scholar
  2. 2.
    Aase, K., Ernkvist, M., Ebarasi, L., et al., Angiomotin regulates endothelial cell migration during embryonic angiogenesis, Genes Dev., 2007, vol. 21, pp. 2055–2068.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Baluk, P. and McDonald, D.M., Markers for microscopic imaging of lymphangiogenesis and angiogenesis, Ann. N.Y. Acad. Sci., 2008, vol. 1131, pp. 1–12.CrossRefPubMedGoogle Scholar
  4. 4.
    Boosani, C.S. and Sudhakar, Y.A., Proteolytically derived endogenous angioinhibitors on riginating from the extracellular matrix, Pharmaceuticals (Basel), 2011, vol. 4, pp. 1551–1577.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bratt, A., Birot, O., Sinha, I., et al., Angiomotin regulates endothelial cell-cell junctions and cell motility, J. Biol. Chem., 2005, vol. 280, no. 41, pp. 34859–34869.CrossRefPubMedGoogle Scholar
  6. 6.
    Dai, X., She, P., Chi, F., et al., Phosphorylation of angiomotin by Lats1/2 kinases inhibits F-actin binding, cell migration, and angiogenesis, J. Biol. Chem., 2013, vol. 288, pp. 34041–34051.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dhanabal, M., Ramchandran, R., Waterman, M.J., et al., Endostatin induces endothelial cell apoptosis, J. Biol. Chem., 1999, vol. 274, pp. 11721–11726.CrossRefPubMedGoogle Scholar
  8. 8.
    Dhanabal, M., Volk, R., Ramchandran, R., et al., Cloning, expression, and in vitro activity of human endostatin, Biochem. Biophys. Res. Commun., 1999, vol. 258, pp. 345–352.CrossRefPubMedGoogle Scholar
  9. 9.
    Ernkvist, M., Luna Persson, N., Audebert, S., et al., The Amot/Patj/Syx signaling complex spatially controls RhoA GTPase activity in migrating endothelial cells, Blood, 2009, vol. 113, no. 1, pp. 244–253.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fang, J., Shing, Y., Wiederschain, D., et al., Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 3884–3889.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gunin, A.G., Petrov, V.V., Golubtzova, N.N., et al., Age-related changes in angiogenesis in human dermis, Exp. Gerontol., 2014, vol. 55, pp. 143–151.CrossRefPubMedGoogle Scholar
  12. 12.
    Hong, W., Angiomotin’g YAP into the nucleus for cell proliferation and cancer development, Sci. Signal., 2013, vol. 291, no. 6, p. pe27. doi 10.1126/scisignal. 2004573Google Scholar
  13. 13.
    Huang, Y., Shi, H., Zhou, H., et al., The angiogenic function of nucleolin is mediated by vascular endothelial growth factor and nonmuscle myosin, Blood, 2006, vol. 107, pp. 3564–3571.CrossRefPubMedGoogle Scholar
  14. 14.
    Itoh, Y., Ito, A., Iwata, K., et al., Plasma membranebound tissue inhibitor of metalloproteinases (TIMP)-2 specifically inhibits matrix metalloproteinase 2 (gelatinase a) activated on the cell surface, J. Biol. Chem., 1998, vol. 273, pp. 24360–24367.CrossRefPubMedGoogle Scholar
  15. 15.
    Jones, E.A, Noble, F., and Eichmann, A., What determines blood vessel structure? Genetic prespecification vs. hemodynamics, Physiology (Bethesda), 2006, vol. 21, pp. 388–395.CrossRefPubMedGoogle Scholar
  16. 16.
    Kim, J.H. and Jung, M., Adipose-derived stem cells as a new therapeutic modality for ageing skin, Exp. Dermatol., 2011, vol. 20, pp. 383–387.CrossRefPubMedGoogle Scholar
  17. 17.
    Kim, Y.M., Jang, J.W., Lee, O.H., et al., Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase, Cancer Res., 2000, vol. 60, pp. 5410–5413.PubMedGoogle Scholar
  18. 18.
    Lee, J.H. and Yoo, J.H., Knockdown of moesin expression accelerates cellular senescence of human dermal microvascular endothelial cells, Yonsei Med. J., 2010, vol. 51, pp. 438–447.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Moleirinho, S., Guerrant, W., and Kissil, J.L., The angiomotins—from discovery to function, FEBS Lett., 2014, vol. 588, pp. 2693–2703.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    O’Reilly, M.S., Boehm, T., Shing, Y., et al., Endostatin: an endogenous inhibitor of angiogenesis and tumor growth, Cell, 1997, vol. 88, pp. 277–285.CrossRefPubMedGoogle Scholar
  21. 21.
    Risau, W., Mechanisms of angiogenesis, Nature, 1997, vol. 386, pp. 671–674.CrossRefPubMedGoogle Scholar
  22. 22.
    Shi, H., Huang, Y., Zhou, H., et al., Nucleolin is a receptor that mediates antiangiogenic and antitumor activity of endostatin, Blood, 2007, vol. 110, pp. 2899–2906.CrossRefPubMedGoogle Scholar
  23. 23.
    Starke, R.D. and Ferraro, F., Endothelial von Willebrand factor regulates angiogenesis, Blood, 2011, vol. 117, pp. 1071–1080.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sudhakar, A., Sugimoto, H., Yang, C., et al., Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by aVß3 and a5ß1 integrins, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 4766–4771.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Troyanovsky, B., Levchenko, T., Månsson, G., et al., Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation, J. Cell Biol., 2001, vol. 152, pp. 1247–1254.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zaidi, M., Krolikowki, J.G., Jones, D.W., et al., Transient repetitive exposure to low level light therapy enhances collateral blood vessel growth in the ischemic hindlimb of the tight skin mouse, Photochem. Photobiol., 2013, vol. 89, pp. 709–713.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang, H., Wang, Z., Peng, Q., et al., Tumor refractoriness to endostatin anti-angiogenesis is associated with the recruitment of CD11b+Gr1+ myeloid cells and inflammatory cytokines, Tumori, 2013, vol. 99, pp. 723–733.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. N. Golubtsova
    • 1
  • O. V. Vasilieva
    • 1
  • V. V. Petrov
    • 1
  • F. N. Filippov
    • 1
  • A. G. Gunin
    • 1
  1. 1.Chuvash State UniversityCheboksaryRussia

Personalised recommendations