Advances in Gerontology

, Volume 3, Issue 3, pp 220–224 | Cite as

Tetrapeptide stimulates functional activity of pancreatic cells in aging

  • V. Kh. Khavinson
  • N. N. Sevostyanova
  • A. O. Durnova
  • N. S. Linkova
  • S. I. Tarnovskaya
  • A. V. Dudkov
  • T. V. Kvetnaya
Article

Abstract

In this study, the molecular mechanisms of pancreoprotective action of the tetrapeptide H-Lys-Glu-Asp-Trp-NH2 in aging human pancreatic cells have been investigated. It has been established that the tetrapeptide under study increases the expression of matrix metallopreteinases MMP2 and MMP9, serotonin, glycoprotein CD79α, antiapoptotic protein Mcl-1, and proliferation markers PCNA and Ki67, as well as decreases the expression of proapoptotic protein p53 in aged pancreatic cell cultures. Thus, the clinical effect of the tetrapeptide observed in elderly patients with type-2 diabetes mellitus and pancreatitis may be due to its ability to activate the expression of signaling molecules, i.e., markers of functional activity of pancreatic cells.

Keywords

tetrapeptide signaling molecules pancreas aging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dedov, I.I., Diabetes mellitus in the Russian Federation: problems and solutions, Sakharnyi Diabet, 1998, no. 1, pp. 7–21.Google Scholar
  2. 2.
    Minushkin, O.N., Chronic pancreatitis, Ter. Arkh., 2001, vol. 73, no. 1, pp. 62–65.PubMedGoogle Scholar
  3. 3.
    Allagnat, F., Cunha, D., Moore, F., et al., Mcl-1 downregulation by pro-inflammatory cytokines and palmitate is an early event contributing to π-cell apoptosis, Cell Death Differ., 2011, vol. 18, no. 2, pp. 328–337.CrossRefPubMedGoogle Scholar
  4. 4.
    Anisimov, V.N. and Khavinson, V.Kh., Peptide bioregulation of aging: results and prospects, Biogerontology, 2010, no. 11, pp. 139–149.Google Scholar
  5. 5.
    Evan, G. and Lifflewood, T., A matter of life and cell death, Science, 1998, vol. 281, no. 5381, pp. 1317–1322.CrossRefPubMedGoogle Scholar
  6. 6.
    Fedoreyeva, L.I., Kireev, I.I., Khavinson, V.Kh., and Vanyushin, B.F., Penetration of short fluorescencelabeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA, Biochemistry, 2011, vol. 76, no. 11, pp. 1210–1219.PubMedGoogle Scholar
  7. 7.
    Jayaraman, S., Epigenetics of autoimmune diabetes, Epigenomics, 2011, vol. 3, no. 5, pp. 639–648.CrossRefPubMedGoogle Scholar
  8. 8.
    Khavinson, V.Kh., Malinin, V.V., Grigoriev, E.I., and Ryzhak, G.A., US Patent 7491703, 2009.Google Scholar
  9. 9.
    Khavinson, V.Kh., Linkova, N.S., Polyakova, V.O., et al., Peptides tissue-specifically stimulate cell differentiation during their aging, Bull. Exp. Biol. Med., 2012, vol. 153, no. 1, pp. 148–151.CrossRefPubMedGoogle Scholar
  10. 10.
    Khavinson, V.Kh., Gavrisheva, N.A., Malinin, V.V., et al., Effect of pancragen on blood glucose level, capillary permeability and adhesion in rats with experimental diabetes mellitus, Bull. Exp. Biol. Med., 2007, vol. 144, no. 4, pp. 559–562.CrossRefPubMedGoogle Scholar
  11. 11.
    Kobayash, H., Doi, R., Hosotani, R., et al., Immunohisto-chemical analysis of apoptosis-related proteins in human embryonic and fetal pancreatic tissues, Int. J. Pancreatol., 2000, vol. 27, no. 2, pp. 113–122.CrossRefPubMedGoogle Scholar
  12. 12.
    Korkushko, O.V., Khavinson, V.Kh., Shatilo, V.B., et al., Prospects of using pancragen for correction of metabolic disorders in elderly people, Bull. Exp. Biol. Med., 2011, vol. 151, no. 4, pp. 454–456.CrossRefPubMedGoogle Scholar
  13. 13.
    Mäkinen, K., Loimas, S., Hakala, T., and Eskelinen, M., Tumor suppressor protein (p53), apoptosis inhibiting protein (Bcl-2) and proliferating cell nuclear antigen (PCNA) expressions in a rat pancreatic tumor model, Anticancer Res., A, 2007, vol. 27, no. 1, pp. 23–26.Google Scholar
  14. 14.
    Miralles, F., Battelino, T., Czernichow, P., and Scharfmann, R., TGF-beta plays a key role in morphogenesis of the pancreatic islets of Langerhans by controlling the activity of the matrix metallo-proteinase MMP-2, J. Cell Biol., 1998, vol. 143, no. 3, pp. 827–836.CrossRefPubMedGoogle Scholar
  15. 15.
    Paulmann, N., Grohmann, M., Voigt, J.-P., et al., Intracellular serotonin modulates insulin secretion from pancreatic (β-cells by protein serotonylation), PLoS Biol., 2009, vol. 7, no. 10, p. e1000229.CrossRefPubMedGoogle Scholar
  16. 16.
    Perez, S.E., Cano, D.A., Dao-Pick, T., et al., Matrix metallo-proteinases 2 and 9 are dispensable for pancreatic islet formation and function in vivo, Diabetes., 2005, vol. 54, no. 3, pp. 694–701.CrossRefPubMedGoogle Scholar
  17. 17.
    Wild, S., Roglic, G., Green, A., et al., Global prevalence of diabetes: estimates for the year 2000 and projections for 2030, Diabetes Care, 2004, vol. 27, no. 5, pp. 1047–1053.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. Kh. Khavinson
    • 1
    • 2
  • N. N. Sevostyanova
    • 2
  • A. O. Durnova
    • 2
  • N. S. Linkova
    • 2
  • S. I. Tarnovskaya
    • 2
  • A. V. Dudkov
    • 2
  • T. V. Kvetnaya
    • 2
  1. 1.Pavlov Institute of PhysiologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg Institute of Bioregulation and GerontologySt. PetersburgRussia

Personalised recommendations