Advances in Gerontology

, Volume 3, Issue 3, pp 180–188 | Cite as

Light pollution increases morbidity and mortality rate from different causes in female rats

  • A. V. Bukalev
  • I. A. Vinogradova
  • M. A. Zabezhinskii
  • A. V. Semenchenko
  • V. N. Anisimov


The influence of different light regimes (constant light, LL; constant darkness, DD; standard light regime, LD, 12 hours light/12 hours darkness; and natural lighting of the northwest of Russia (NL) on non-tumor pathology revealed in the post-mortem examination of female rats has been studied. It was found that keeping 25-days-old animals under LL and NL conditions led to an increase in the number of infectious diseases and the substantially faster development of spontaneous tumors (2.9 and 3.3 diseases per one rat, respectively), variety of nontumor pathology found in dead rats, compared with the animals in standard (standard light) regime (1.72 diseases per one rat). Light deprivation (DD) led to a substantial reduction in the development of new growth, as well as nontumor and infectious diseases (1.06 diseases per one rat), compared to the same parameters in a standard light regime.


light-at-night spontaneous tumors nontumor pathology epiphysis rats 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anisimov, V.N., Molekulyarnye i fiziologicheskie mekhanizmy streniya: v 2-kh tomakh (Molecular and Physiological Mechanisms of Aging), 2 vols., St. Petersburg: Nauka, 2008, vol. 1.Google Scholar
  2. 2.
    Anisimov, V.N. and Vinogradova, I.A., Light-dark conditions, melatonin and risk of cancer, Vopr. Onkol., 2006, vol. 52, no. 5, pp. 491–498.PubMedGoogle Scholar
  3. 3.
    Anisimov, V.N. and Vinogradova, I.A., Strenie zhenskoi reproduktivnoi sistemy i melatonin (Senescence of Female Reproductive System and Melatonin Effect), St. Petersburg: Sistema, 2008.Google Scholar
  4. 4.
    Vinogradova, I.A., Effect of different illumination regimes on biological age and development of agerelated pathology in rats, Med. Akad. Zh., 2005, no. 2, suppl. 6, pp. 16–18.Google Scholar
  5. 5.
    Vinogradova, I.A., Bukalev, A.V., Zabezhinsky, M.A., Semenchenko, A.V., and Anisimov, V.N., Lighting effect on spontaneous tumor development in female rats, Vopr. Onkol., 2007, vol. 53, no. 5, pp. 554–561.PubMedGoogle Scholar
  6. 6.
    Vinogradova, I.A., Bukalev, A.V., Zabezhinsky, M.A., Semenchenko, A.V., and Anisimov, V.N., Effect of light regimens and melatonin on the homeostasis, life span and development of spontaneous tumors in female rats, Usp. Gerontol., 2007, vol. 20, no. 4, pp. 40–47.Google Scholar
  7. 7.
    Gerontologiya in silico: stanovlenie novoi distsipliny. Matematicheskie modeli, analiz dannykh i vychislitel’nye eksperimenty (Gerontology in silico: Development of New Discipline. Mathematical Models, Data Analysis, and Computational Experiments), Marchuk, G.I., et al., Eds., Moscow: BINOM, 2007.Google Scholar
  8. 8.
    GOST (State Standard) 53434-2009: Principles of Accurate Laboratory Practice, Moscow: Standartinform, 2010.Google Scholar
  9. 9.
    Gubler, E.G., Kolichestvennye metody analiza rezul’tatov meditsinskikh issledovanii (Quantitative Analysis of Medical Experimental Data), Leningrad: Meditsina, 1978.Google Scholar
  10. 10.
    Zabezhinskii, M.A., Anisimov, V.N., Popovich, I.G., et al., The modern approach to evaluation of oncologic risk of carcinogenesis factors, in Onkologicheskaya statistika (traditsionnye metody, novye informatsionnye tekhnologii): Ruk. dlya vrachei (Statistics of Oncology Cases (Traditional Methods and New Informational Technologies): Manual for Doctors), Merabishvili, V.M., Ed., St. Petersburg: KOSTA, 2011, part 2, pp. 175–199.Google Scholar
  11. 11.
    Zamorskii, I.I. and Pishak, V.P., The functional organization of a photoperiodic brain system, Usp. Fiziol. Nauk, 2003, vol. 34, no. 4, pp. 37–53.PubMedGoogle Scholar
  12. 12.
    Komarov, F.I., Rapoport, S.I., Malinovskaya, N.K., and Anisimov, V.N., Melatonin v norme i patologii (Melatonin in Norm and Pathology), Moscow: Medpraktika-M, 2004.Google Scholar
  13. 13.
    Prikaz Minzdravsotsrazvitiya RF “Ob utverzhdenii pravil laboratornoi praktiki” no. 708n ot 23 avgusta 2010 g. (Order of the Ministry of Health and Social Development of Russian Federation “The Rules of Laboratory Practice” Adopted on August 23, 2010).Google Scholar
  14. 14.
    Rukovodstvo po eksperimental’nomy (doklinicheskomu) izucheniyu novykh farmakologicheskikh veshchestv (Manual on Experimental (Pre-Clinical) Study of New Pharmacological Substances), Kharbiev, R.U., Ed., Moscow: Meditsina, 2005.Google Scholar
  15. 15.
    Eticheskaya ekspertiza biomeditsinskikh issledovanii. Prakticheskie rekomendatsii (Ethical Expertise of Biomedical Studies: Practical Recommendations), Belousov, Yu.B., Ed., Moscow: Ross. Ob-vo Klin. Issled., 2005.Google Scholar
  16. 16.
    Anisimov, V.N. and Hansen, J., Light, endocrine systems and cancer-a meeting report, Neuroendocrinol. Lett., 2002, vol. 23,suppl. 2, pp. 78–81.Google Scholar
  17. 17.
    Anisimov, V.N., Baturin, D.A., Popovich, I.G., et al., Effect of exposure to light-at-night on life span and spontaneous carcinogenesis in female CBA mice, Int. J. Cancer, 2004, vol. 111, pp. 475–479.CrossRefPubMedGoogle Scholar
  18. 18.
    Baturin, D.A., Alimova, I.N., Anisimov, V.N., et al., Effect of light regime and melatonin on the development of spontaneous mammary tumors in HER-2/neu transgenic mice is related to a downregulation of HER-2/neu gene expression, Neuroendocrinol. Lett., 2001, vol. 22, pp. 439–445.Google Scholar
  19. 19.
    Cos, S., Mediavilla, D., Martinez-Campa, C., et al., Exposure to light-at-night increases the growth of DMBA-induced mammary adenocarcinomas in ruts, Cancer Lett., 2006, vol. 235, pp. 266–271.CrossRefPubMedGoogle Scholar
  20. 20.
    Davis, S. and Mirck, D.K., Circadian disruption, shift work, and the risk of cancer: a summary of the evidence and studies in Seattle, Cancer, Causes Control, Pap. Symp., 2006, vol. 17, pp. 539–545.CrossRefGoogle Scholar
  21. 21.
    Fu, L. and Lee, C.C., The circadian clock: pacemaker and tumor suppressor, Nat. Rev. Cancer, 2003, vol. 3, pp. 350–361.CrossRefPubMedGoogle Scholar
  22. 22.
    Gart, J.J., Krewski, D., Lee, P.N., et al., Statistical Methods in Cancer Research, Vol. 3: The Design and Analysis of Long-Term Animal Experiments, Lyon: IARC Sci. Publ., 1986, no. 79.Google Scholar
  23. 23.
    Hansen, J., Risk of breast cancer after night- and shift work: current evidence and ongoing studies in Denmark, Cancer, Causes Control, Pap. Symp., 2006, vol. 17, pp. 531–537.CrossRefGoogle Scholar
  24. 24.
    Jasser, S.A., Blask, D.E., and Brainard, G.C., Light during darkness and cancer: relationships in circadian photoreception and tumor biology, Cancer, Causes Control, Pap. Symp., 2006, vol. 17, pp. 515–523.CrossRefGoogle Scholar
  25. 25.
    Pauley, S.M., Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue, Med. Hypotheses, 2004, vol. 63, pp. 588–596.CrossRefPubMedGoogle Scholar
  26. 26.
    Percy, D.H. and Barthold, S.W., Pathology of Laboratory Rodents and Rabbits, Ames Iowa: Blackwell, 2007.CrossRefGoogle Scholar
  27. 27.
    Rana, S. and Mahmood, S., Circadian rhythm and its role in malignancy, J. Circadian Rhythms, 2010, vol. 8, pp. 3–13.CrossRefPubMedGoogle Scholar
  28. 28.
    Schernhammer, E.S., Laden, F., Speizer, F.E., et al., Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study, J. Natl. Cancer Inst., 2001, vol. 93, pp. 1563–1568.CrossRefPubMedGoogle Scholar
  29. 29.
    Stevens, R.G., Artificial lighting in the industrialized world: circadian disruption and breast cancer, Cancer, Causes Control, Pap. Symp., 2006, vol. 17, pp. 501–507.CrossRefGoogle Scholar
  30. 30.
    Turusov, V.S. and Mohr, U., Pathology of Tumors in Laboratory Animals, Vol. 2: Tumors of the Rats, Lyon: IARC Sci. Publ. 111, 1994.Google Scholar
  31. 31.
    van den Heilignerberg, S., Depres-Brummer, P., Barbason, H., et al., The tumor promoting effect of constant light exposure on diethylnitrosamine-induced hepatocarcinogenesis in rats, Life Sci., 1999, vol. 64, pp. 2523–2534.CrossRefGoogle Scholar
  32. 32.
    Vinogradova, I.A., Anisimov, V.N., Bukalev, A.V., et al., Circadian disruption induced by light-at-night accelerates ages and promotes tumorigenesis in rats, Aging (N.Y.), 2009, vol. 1, no. 10, pp. 855–856.Google Scholar
  33. 33.
    Vinogradova, I.A., Anisimov, V.N., Bukalev, A.V., et al., Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in young but not in old rats, Aging (N.Y.), 2010, vol. 2, no. 2, pp. 82–92.Google Scholar
  34. 34.
    Vinogradova, I.A., Bukalev, A.V., Zabezhinski, M.A., et al., Effect of ALA-GLU-ASP-GLY peptide on life span and development of spontaneous tumors in female rats exposed to different illuminations regimes, Bull. Exp. Biol. Med., 2007, vol. 144, no. 6, pp. 825–830.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. V. Bukalev
    • 1
  • I. A. Vinogradova
    • 2
  • M. A. Zabezhinskii
    • 3
  • A. V. Semenchenko
    • 3
  • V. N. Anisimov
    • 3
  1. 1.Baranov Republican HospitalPetrozavodskRussia
  2. 2.Petrozavodsk State UniversityPetrozavodskRussia
  3. 3.Petrov Research Institute of OncologySt. PetersburgRussia

Personalised recommendations