Advances in Gerontology

, Volume 3, Issue 2, pp 124–128 | Cite as

The peptide Ala-Glu-Asp-Gly and interferon gamma: Their role in immune response during aging

  • N. S. Lin’kova
  • B. I. Kuznik
  • V. Kh. Khavinson
Article
  • 29 Downloads

Abstract

The decrease in interferon gamma expression by lymphocytes during aging is one of the main mechanisms leading to an immunodeficiency state in the elderly. Cell-penetrating geroprotective peptide Ala-Glu-Asp-Gly has the ability to activate proliferation of lymphocytes in the thymus during its aging. The nucleotide sequence that complementary contacts with Ala-Glu-Asp-Gly has been found in the promoter region of interferon gamma gene. Thus, the immunoprotective effect of the peptide can be explained by activation of interferon gamma production in T cells.

Keywords

interferon gamma lymphocytes Ala-Glu-Asp-Gly aging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ketlinskii, S.A. and Simbirtsev, A.S., Tsitokiny (Cytokines), St. Petersburg: Feniks, 2008.Google Scholar
  2. 2.
    Kudryashova, I.A. and Polunina, O.S., Comparative study of proinflammatory cytokine level in patients with community-acquired pneumonia at different stages of disease and age, Fundament. Issled., 2007, no. 12, pp. 113–114.Google Scholar
  3. 3.
    Kuznik, B.I., Kletochnye i molekulyarnye mekhanizmy regulyatsii sistemy gemostaza v norme i patologii (Cellular and Molecular Processes of Hemostasis Regulation in Normal and Pathological State), Chita: Ekspress-Izd., 2010.Google Scholar
  4. 4.
    Kuznik, B.I., Likhanov, I.D., Tsepelev, V.L., and Sizonenko, V.A., Teoreticheskie i klinicheskie aspekty bioreguliruyushchei terapii v khirurgii i travmatologii (Theoretical and Practical Principles of Bioregulating Therapy Applied in Surgery and Traumatology), Novosibirsk: Nauka, 2008.Google Scholar
  5. 5.
    Loseva, E.V., Loginova, N.A., and Akmaev, N.G., A role of α-interferon in regulatory function of nervous system, Usp. Fiziol. Nauk, 2008, no. 2, pp. 32–46.Google Scholar
  6. 6.
    Sukmanova, I.A., Yakhontov, D.A., Pospelova, T.I., et al., Clinical presentation, morphofunctional parameters and function of endothelium in different-age patients with systolic chronic cardiac insufficiency, Tsitokin. Vospal., 2010, vol. 9, no. 3, pp. 30–34.Google Scholar
  7. 7.
    Yarilin, A.A., Khavinson V.Kh., Polyakova, V.O., et al., Alteration of differentiation, proliferation and apoptosis of thymocytes affected by synthetic peptides, Morfologiya, 2011, vol. 140, no. 4, pp. 23–26.Google Scholar
  8. 8.
    Anisimov, V.N. and Khavinson, V.Kh., Peptide bioregulation of aging: results and prospects, Biogerontology, 2010, vol. 11, pp. 139–149.PubMedCrossRefGoogle Scholar
  9. 9.
    Caytanot, F., Nygard, M., Perret, M., et al., Plasma levels of interferon γ correlate with age-related disturbances of circadian rhythmus and survival in a nohuman primate, Chronobiol. Int., 2009, vol. 26, no. 8, pp. 1587–1601.CrossRefGoogle Scholar
  10. 10.
    Chugh, A., Eudes, F., and Shim, Y.S., Cell-penetrating peptides: nanocarrier for macromolecule delivery in living cells, IUBMB Life, 2010, vol. 62, no. 3, pp. 183–193.PubMedCrossRefGoogle Scholar
  11. 11.
    Fedoreyeva, L.I., Kireev, I.I., Khavinson, V.Kh., and Vanyushin, B.F., Penetration of short fluorescencelabeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA, Biochemistry, 2011, vol. 76, no. 11, pp. 1505–1516.Google Scholar
  12. 12.
    Khavinson, V.Kh. and Malinin, V.V., Gerontological Aspects of Genome Peptide Regulation, Basel, Switzerland: Karger AG, 2005.Google Scholar
  13. 13.
    Khavinson, V.Kh., Fedoreeva, L.I., and Vanyushin, B.F., Short peptides modulate the effect of endonucleases of wheat seedling, Dokl. Biochem. Biophys., 2011, vol. 437, pp. 64–67.PubMedCrossRefGoogle Scholar
  14. 14.
    Khavinson, V.Kh., Shataeva, L.K., and Chernova, A.A., DNA double-helix binds regulatory peptides similarly to transcription factors, Neuroendocr. Lett., 2005, vol. 26, no. 3, pp. 237–241.Google Scholar
  15. 15.
    Khavinson, V.Kh., Lezhava, T.A., Monaselidze, J.R., et al., Peptide Epitalon activates chromatin at the old age, Neuroendocr. Lett., 2003, vol. 24, no. 5, pp. 329–333.Google Scholar
  16. 16.
    Kuznik, B.I., Pateiuk, A.V., Khavinson, V.Kh., and Malinin, V.V., Effect of epitalon on the immunity and hemostasis in hypophysectomized chicken and old hens, Adv. Gerontol., 2004, vol. 13, pp. 90–93.PubMedGoogle Scholar
  17. 17.
    Kuznik, B.I., Isakova, N.V., Kliuchereva, N.N., et al., Effect of vilon on the immunity status and coagulation hemostasis in patients of different age with diabetes mellitus, Adv. Gerontol., 2007, vol. 20, no. 2, pp. 106–115.PubMedGoogle Scholar
  18. 18.
    Kuznik, B.I., Pateiuk, A.V., Rusaeva, N.S., et al., Effects of hypophyseal Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly synthetic peptides on immunity, hemostasis, morphology, and functions of the thyroid gland in neonatally hypophysectomized chicken and one-year-old birds, Pat. Fiziol. Eksp. Ter., 2010, vol. 1, pp. 14–18.PubMedGoogle Scholar
  19. 19.
    Kvetnoy, I.M., Polyakova, V.O., Trofimov, A.V., et al., Hormonal function and proliferative activity of thymic cells in humans: immunocytochemical correlations, Neuroendocr. Lett., 2003, vol. 24, nos. 3–4, pp. 263–268.Google Scholar
  20. 20.
    Lin’kova, N.S., Polyakova, V.O., and Kvetnoy, I.M., Interrelation of cell apoptosis and proliferation in the thymus during its involution, Bull. Exp. Biol. Med., 2011, vol. 151, no. 4, pp. 460–462.CrossRefGoogle Scholar
  21. 21.
    Linkova, N.S., Polyakova, V.O., Trofimov, A.V., et al., Influence of peptides from pineal gland on thymus function with aging, Adv. Gerontol., 2011, vol. 1, no. 3, pp. 240–243.CrossRefGoogle Scholar
  22. 22.
    Lin’kova, N.S., Polyakova, V.O., Kvetnoy, I.M., et al., Specific features in the pineal gland-thymus relationships during aging, Adv. Gerontol., 2011, vol. 1, no. 4, pp. 295–298.CrossRefGoogle Scholar
  23. 23.
    Seeman, N.C., Rosenberg, J.M., and Rich, A., Sequence-specific recognition of double helical nucleic acids by proteins, Proc. Natl. Acad. Sci. USA, 1976, vol. 73, no. 3, pp. 804–808.PubMedCrossRefGoogle Scholar
  24. 24.
    Trabulo, S., Cardoso, A.L., Mano, M., et al., S4(13)-PV cell penetrating peptide and cationic liposomes act synergistically to mediate intracellular delivery of plasmid DNA, Pharmaceuticals, 2010, vol. 3, pp. 961–993.CrossRefGoogle Scholar
  25. 25.
    Tünnemann, G., Martin, R.M., Haupt, S., et al., Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells, FASEB J., 2006, vol. 20, no. 11, pp. 1775–1784.PubMedCrossRefGoogle Scholar
  26. 26.
    Yarilin, A.A., and Belyakov, I.M., Cytokines in the thymus: production and biological effects, Curr. Med. Chem., 2004, vol. 11, no. 4, pp. 447–464.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • N. S. Lin’kova
    • 1
  • B. I. Kuznik
    • 2
  • V. Kh. Khavinson
    • 1
    • 3
  1. 1.St. Petersburg Institute of Bioregulation and GerontologySt. PetersburgRussia
  2. 2.Chita State Medical AcademyChitaRussia
  3. 3.Pavlov Institute of PhysiologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations