Advertisement

Advances in Gerontology

, Volume 3, Issue 1, pp 18–22 | Cite as

Role of oxidative stress in skin aging

  • L. S. Kozina
  • I. V. Borzova
  • V. A. Arutiunov
  • G. A. Ryzhak
Article

Abstract

The review covers the literature that prove that the formation of ROS in aging overbalances the antioxidant defence system potential of the skin structure (horny layer, epidermis, and dermis). It has been shown that ROSs are involved in the pathogenesis of inflammatory processes and allergic responses in the skin. The role of ROS and antioxidant systems in the cell-mediated responses associated with the MAP kinase activity in the skin is discussed. Special attention is focused on exposure to ultraviolet radiation, which accounts for its genotoxic, immunosuppressive, and carcinogenic effects on skin.

Keywords

oxidative stress ROS MAP kinases skin antioxidant systems fibroblasts keratinocytes carcinogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dubinina, E.E., Produkty metabolizma kisloroda v funktsional’noi aktivnosti kletok (The Products of Oxygen Metabolism in Functional Activity of the Cells), St. Petersburg: Med. Pressa, 2006.Google Scholar
  2. 2.
    Athar, M., Oxidative Stress and Experimental Carcinogenesis, Indian. J. Exp. Biol., 2002, vol. 40, pp. 656–667.PubMedGoogle Scholar
  3. 3.
    Athar, M., Lloyd, J.R., Bickers, D.R., and Mukhtar, H., Malignant Conversion of UV Radiation and Chemically Induced Mouse Skin Benign Tumors by Free-Radical Generating Compounds, Carcinogenesis, 1989, vol. 10, pp. 1841–1845.PubMedCrossRefGoogle Scholar
  4. 4.
    Aziz, M.H., Afaq, F., and Ahmad, N., Prevention of Ultraviolet-B Radiation Damage by Resveratol in Mouse Skin is Mediated via Modulation in Surviving, Photochem. Photobiol., 2005, vol. 81, pp. 25–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Bachelor, M.A. and Bowden, G.T., UVA-Mediated Activation of Signaling Pathways Involved in Skin Tumor Promotion and Progression, Semin. Cancer Biol., 2004, vol. 14, pp. 131–138.PubMedCrossRefGoogle Scholar
  6. 6.
    Berlett, B.S. and Stadtman, E.R., Protein Oxidation in Aging, Disease, and Oxidative Stress, J. Biol. Chem., 1997, vol. 272, pp. 20313–20316.PubMedCrossRefGoogle Scholar
  7. 7.
    Bickers, D.R. and Athar, M., Oxidative Stress in Pathogenesis of Skin Disease, J. Invest. Dermatol., 2006, vol. 126, pp. 2565–2575.PubMedCrossRefGoogle Scholar
  8. 8.
    Black, H.S., ROS: A Step Closer to Elucidating Their Role in the Etiology of Light-Induced Skin Disorders, J. Invest. Dermatol., 2004, vol. 122, no. 6, pp. 1463–1470.CrossRefGoogle Scholar
  9. 9.
    Black, H.S., Prooxidant and Antioxidant Mechanisms of BHT and Beta-Carotene in Photocarcinogenesis, Front. Biosci., 2002, vol. 7, pp. 1044–1052.Google Scholar
  10. 10.
    Boldyrev, A.A., Significance of Reactive Oxygen Species for Neuronal Function, in Free Radicals, NO, and Inflammation, Molecular, Biochemical and Clinical Aspects, Tomasi, A., et al., Eds., IOS Press, 2003, pp. 1153–1169.Google Scholar
  11. 11.
    Briganti, S. and Picardo, M., Antioxidant Activity, Lipid Peroxidation, and Skin Disease. What’s New?, J. Europ. Dermatol. Venerol., 2003, vol. 17, pp. 663–669.CrossRefGoogle Scholar
  12. 12.
    Callaghan, T.M. and Wilhelm, K.P., A Review of Ageing and an Examination of Clinical Methods in the Assessment of Ageing Skin, Part I: Cellular and Molecular Perspectives of Skin Ageing, Int. J. Cosmetic Sci., 2008, vol. 30, pp. 313–322.CrossRefGoogle Scholar
  13. 13.
    Cals-Grierson, M.M. and Ormerod, A.D., Nitric Oxide Function in the Skin, Nitric Oxide, 2004, vol. 10, pp. 179–193.PubMedCrossRefGoogle Scholar
  14. 14.
    Cerutti, P., Shah, G., Peskin, A., and Amstad, P., Oxidant Carcinogenesis and Antioxidant Defense, Ann. N.Y. Acad. Sci., 1992, vol. 663, pp. 158–166.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen, A. and Davis, B.H., UV Irradiation Activates JNK and Increases Alpha(I) Collagen Expression in Rat Hepatic Stellate Cells, J. Biol. Chem., 1999, vol. 274, pp. 158–164.PubMedCrossRefGoogle Scholar
  16. 16.
    Chung, J.H., Kang, S., Varani, J., et al., Decreased Extracellular-Signal-Regulated Kinase and Decreased Stress-Activated MAP Kinase Activities in Aged Human Skin in vivo, J. Invest. Dermatol., vol. 115, no. 2, pp. 177–182.Google Scholar
  17. 17.
    Curtin, G.M., Hanausek, M., Walaszek, Z., et al., Short Term in vitro and in vivo Analyses for Assessing the Tumor-Promoting Potentials of Cigarette Smoke Condensates, Toxicol. Sci., 2004, vol. 81, pp. 14–25.PubMedCrossRefGoogle Scholar
  18. 18.
    Dhar, A., Young, M.R., and Colburn, N.H., The Role of AP-1, NF-kappaB and ROS/NOS in Skin Carcinogenesis: The jB6 Model is Predictive, Mol. Cell. Biochem., 2002, vols. 234–235, pp. 185–193.PubMedCrossRefGoogle Scholar
  19. 19.
    De Gruiji, F.R., Photocarcinogenesis: UVA vs UVB: Singlet Oxygen, UVA, and Ozone, Methods Enzymol., 2000, vol. 319, pp. 359–366.CrossRefGoogle Scholar
  20. 20.
    Dimon-Gadal, S., Gerbaud, P., Therond, P., et al., Increased Oxidative Damage to Fibroblasts in Skin with and without Lesions in Psoriasis, J. Invest. Dermatol., 2000, vol. 114, pp. 984–989.PubMedCrossRefGoogle Scholar
  21. 21.
    Gum, R., Wang, H., Lengyel, E., et al., Regulation of 92 kDa Type IV Expression of the Jun Aminoterminal Kinase and the Extracellular Signal-Regulated Kinase-Dependent Signaling Cascades, Oncogene, 1997, vol. 14, pp. 1481–1493.PubMedCrossRefGoogle Scholar
  22. 22.
    Hruza, L.I. and Pentland, A.P., Mechanisms of UV-Induced Inflammation, J. Invest. Dermatol., 1993, vol. 100, pp. S35–S41.CrossRefGoogle Scholar
  23. 23.
    Huang, C.C., Wu, W.B., Fang, J.Y., et al., (−)-Epigallocatechin-3-Gallate, a Green Tea Polyphenol Is a Potent Agent Against UVB-Induced Damage in HaCaT Ceratinocytes, Molecules, 2007, vol. 12, pp. 1845–1858.PubMedCrossRefGoogle Scholar
  24. 24.
    Jeanmaire, C., Danoux, L., and Pauly, G., Glycation during Human Dermal Intrinsic and Actinic Ageing: An in vivo and in vitro Model Study, Brit. J. Dermatol., 2001, vol. 45, pp. 10–18.CrossRefGoogle Scholar
  25. 25.
    Katijar, S.K., Afaq, F., and Azizuddin, K., Inhibition of UFB-Induced Oxidative Stress-Mediated Phosphorylation of Mitogen-Activated Protein Kinase Signaling Pathways in Cultured Human Epidermal Keratinocytes by Green Tee Polyphenol (−)-Epigallocatechin-3-Gallate, Toxicol. Appl. Pharmacol., 2001, vol. 176, pp. 101–107.CrossRefGoogle Scholar
  26. 26.
    Katiyar S.K., Agarwal R., Mukhtar H., Inhibition of Spontaneous and Photoenhanced Lipid Peroxidation in Mouse Epidermal Microsomes by Epicatechin Derivatives from Green, Cancer Lett., 1994, vol. 79, pp. 61–66.PubMedCrossRefGoogle Scholar
  27. 27.
    Katiyar, S.K., Matsui, M.S., Elmets, C.A., et al., Polyphenolic Antioxidant (−)-Epigallocatechin-3-Gallate from Green Tea Reduces UVB-Induced Inflammatory Responses and Infiltration of Leucocytes in Human Skin, Photochem. Photobiol., 1999, vol. 69, pp. 148–153.PubMedGoogle Scholar
  28. 28.
    Kawakubo, Y., Nakamori, M., Schopf, E., and Ohkido, M., Acetylator Phenotype in Patients with p-Phenylendiamine Allergy, Dermatology, 1997, vol. 195, pp. 43–45.PubMedCrossRefGoogle Scholar
  29. 29.
    Kidd, P., Th1/Th2 Balance: The Hypothesis, Its Limitations, and Implications for Health and Disease, Altern. Med. Rev., 2003, vol. 8, pp. 223–246.PubMedGoogle Scholar
  30. 30.
    Kim, A.L, Labasi, J.M., Zhu, Y., et al., Role of MAPK in UVB Induced Inflammatory Responses in the Skin of SKH-1 Hairless Mice, J. Invest. Dermatol., 2005, vol. 124, pp. 318–325.CrossRefGoogle Scholar
  31. 31.
    Kinlen, L., Sheil, A., and Peta, J., Collaborative United Kingdom-Australia Study of Cancer in Patients Treated with Immunosuppressive Drugs, Brit. J. Med., 1979, pp. 1461–1466.Google Scholar
  32. 32.
    Kishida, K. and Klann, E., Sources and Targets of Reactive Oxygen Species in Synaptic Plasticity and Memory, Antiox. Redox Sign., 2007, vol. 9, pp. 233–244.CrossRefGoogle Scholar
  33. 33.
    Leccia, M.T., Yaar, M., Allen, N., et al., Solar Simulated Irradiation Modulates Gene Expression and Activity of Antioxidant Enzymes in Cultured Dermal Fibroblasts, Exp. Dermatol., 2001, vol. 10, pp. 272–279.PubMedCrossRefGoogle Scholar
  34. 34.
    Levine, R.L., Williams, J.A., Stadtman, E.A., and Shaster, E., Carbonyl Assays for Determination of Oxidatevely Modified Proteins, Meth. Enzymol., 1994, vol. 233, pp. 346–357.PubMedCrossRefGoogle Scholar
  35. 35.
    Matos, T.J., Duarte, C.B., Goncalo, M., and Lopes, M.C., Role of Oxidative Stress in ERK and P38 MAPK Activation Induced by the Chemical Sensitizer DNFB in a Fetal Skin Dendrite Cell Line, J. Immunol. Cell. Biol., 2005, vol. 83, pp. 607–614.CrossRefGoogle Scholar
  36. 36.
    Mittal, A., Elmets, C.A., and Katijar, S.K., Dietary Feeding of Proanthocyanidins from Grape Seeds Prevents Photocarcinogenesis in SKH-Hairless Mice: Relationship to Decreased Fat and Lipid Peroxidation, Carcinogenesis, 2003, vol. 24, no. 8, pp. 1379–1388.PubMedCrossRefGoogle Scholar
  37. 37.
    Morley, N., Clifford, T., Salter, L., et al., The Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate and Green Tea Can Protect Human Cellular DNA from Ultraviolet and Visible Radiation-Induced Damage, Photoderm. Photoimmunol. Photomed., 2005, vol. 21, pp. 15–22.CrossRefGoogle Scholar
  38. 38.
    Nakamura, Y., Golburn, N.H., and Ginhardt, T.D., Role of Reactive Oxygen in Tumor Promotion: Implication of Superoxide Anion in Promotion of Neoplastic Transformation in jB-6 Cells by TPA, Carcinogenesis, 1985, vol. 6, pp. 229–235.PubMedCrossRefGoogle Scholar
  39. 39.
    Nichols, J.A. and Katiyar, S.K., Skin Photoprotection by Natural Polyphenols: Antiinflammatory, Antioxidant and DNA Repair Mechanisms, Arch. Dermatol. Res., 2010, vol. 302, no. 2, pp. 71–83.PubMedCrossRefGoogle Scholar
  40. 40.
    Nishigori, C., Hattori, Y., and Toyokuni, S., Role of Reactive Oxygen Species in Skin Carcinogenesis, Antioxid. Redox. Sign., 2004, vol. 6, pp. 561–570.CrossRefGoogle Scholar
  41. 41.
    O’Donovan, P., Perrett, C.M., Zhang, X., et al., Azathioprine and UVA Light Generate Mutagenic Oxidative Damage, Science, 2005, vol. 309, pp. 1871–1874.PubMedCrossRefGoogle Scholar
  42. 42.
    Parrish, J.A., Immunosupression, Skin Cancer, and Ultraviolet A Radiation, New Engl. J. Med., 2005, vol. 353, pp. 2712–2713.PubMedCrossRefGoogle Scholar
  43. 43.
    Podhaisky, H.P., Riemschneider, S., and Wohrlab, W., UV Light and Oxidative Damage in the Skin, Pharmacie, 2002, vol. 57, pp. 30–33.Google Scholar
  44. 44.
    Poswig, A., Wenk, J., Brenneisen, P., et al., Adaptive Antioxidant Response of Manganese-Superoxide Dismutase Following Repetitive UVA Irradiation, J. Invest. Dermatol., 1999, vol. 112, pp. 13–18.PubMedCrossRefGoogle Scholar
  45. 45.
    Rattan, S.I., Theories of Biological Aging: Genes, Proteins, and Free Radicals, Free Rad. Res., 2006, vol. 40, no. 12, pp. 1230–1238.CrossRefGoogle Scholar
  46. 46.
    Ryter, S.W. and Tyrell, R.M., The Hemosynthesis and Degradation Pathways: Role in Oxidant Sensitivity. Hemoxigenase Has Both Pro- and Antioxidant Properties, Free Rad. Biol. Med., vol. 28, pp. 289–309.Google Scholar
  47. 47.
    Sander, C.S., Chang, H., Hamm, F., et al., Role of Oxidative Stress and the Antioxidant Network in Cutaneous Carcinogenesis, Int. J. Dermatol., 2004, vol. 43, pp. 326–335.PubMedCrossRefGoogle Scholar
  48. 48.
    Sander, C.S., Chang, H., Salzmann, S., et al., Photoaging is Associated with Protein Oxidation in Human Skin in vivo, J. Invest. Dermatol., 2002, vol. 118, pp. 619–625.CrossRefGoogle Scholar
  49. 49.
    Scotto, J. and Fears, T.R., Skin Cancer Epidemiology: Research Needs, Natl. Cancer. Inst. Monogr., 1978, vol. 50, pp. 169–177.PubMedGoogle Scholar
  50. 50.
    Sharma, S.D., Meeran, S.M., and Katiyar, S.K., Dietary Grape Seed Proanthocyanidins Inhibit UVB-Induced Oxidative Stress and Activation of Mitogen-Activated Protein Kinases and Nuclear Factor-kB Signaling in vivo SKH Hairless Mice, Mol. Cancer. Ther., 2007, vol. 6, pp. 995–1005.PubMedCrossRefGoogle Scholar
  51. 51.
    Squer, T.C., Oxidative Stress and Protein Degradation during Biological Aging, Exp. Gerontol., 2001, vol. 36, no. 9, pp. 1539–1550.CrossRefGoogle Scholar
  52. 52.
    Svobodova, A., Psotova, J., and Walterova, D., Natural Phenolics in the Prevention of UV-Induced Skin Damage, A Review Biomed. Pap. Med. Univ. Palacky Olomouc Czech Republ., 2004, vol. 147, no. 2, pp. 137–145.CrossRefGoogle Scholar
  53. 53.
    Tanaka, N., Tajima, S., Ishibashi, A., et al., Immunohistochemical Detection of Lipid Peroxidation Products, Protein Bound Acrolein and 4-Hydroxynonenal Protein Adducts, in Actinic Elastosis of Photodamaged Skin, Arch. Dermatol. Res., 2001, vol. 293, pp. 565–367.Google Scholar
  54. 54.
    Thiele, J.J., Traber, M.G., Re, R., et al., Macromolecular Carbonyls in Human Stratum Corneum: A Biomarker for Environmental Oxidant Exposure?, FEBS Lett., 1998, vol. 422, pp. 403–406.PubMedCrossRefGoogle Scholar
  55. 55.
    Thiele, J.J., Hsieh, S.N., Briviba, K., and Sies, H., Protein Oxidation in Human Stratum Corneum; Susceptibility of Ceratins to Oxidation in vitro and Presence of Ceratine Oxidation Gradient in vivo, J. Invest. Dermatol., 1999, vol. 113, pp. 335–339.PubMedCrossRefGoogle Scholar
  56. 56.
    Urbach, F., Incidences of Nonmelanoma Skin Cancer, Dermatol. Clin., 1991, vol. 9, pp. 751–755.PubMedGoogle Scholar
  57. 57.
    Varani, J., Warner, R.L., Chung, J.H., et al., Retinol (Vitamin A) Stimulates Collagen Accumulation in Chronologically-Aged Human Skin in vivo, J. Invest. Dermatol., 2000, vol. 114, no. 3, pp. 480–486.PubMedCrossRefGoogle Scholar
  58. 58.
    Vayalil, P.K., Elmets, C.A., and Katiyar, S.K., Treatment of Green Tea Polyphenols in Hydrophilic Cream Prevents UVB-Induced Oxidation of Lipids and Proteins, Depletion of Antioxidant Enzymes and Phosphorylation of MAPK Proteins in SKH-1 Hairless Mouse Skin, Carcinogenesis, 2003, vol. 24, pp. 927–936.PubMedCrossRefGoogle Scholar
  59. 59.
    Verheji, M., Bose, R., Lin, X.H., et al., Requirement for Ceramide-Initiated SAPK/JNK Signaling in Stress-Induced Apoptosis, Nature, 1996, vol. 380, pp. 75–79.CrossRefGoogle Scholar
  60. 60.
    Wang, S.Q., Setlow, R., and Berwick, M., Ultraviolet A and Melanoma: A Review, J. Amer. Acad. Dermatol., 2001, vol. 44, pp. 837–846.CrossRefGoogle Scholar
  61. 61.
    Wenk, J., Brennissen, P., Meewes, C., et al., UV-Induced Oxidative Stress and Photoaging, in Oxidants and Antioxidants in Cutaneous Biology, Current Problems in Dermatology, Thiele, J. and Elsner, P., Eds., Basel: Karger, 2001, vol. 29, pp. 83–94.Google Scholar
  62. 62.
    Xia, Z., Dickens, M., Raingeaud, J., et al., Opposing Effects of ERK and JNK-p38 MAP-Kinases on Apoptosis, Science, 1995, vol. 270, pp. 1326–1331.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • L. S. Kozina
    • 1
  • I. V. Borzova
    • 1
  • V. A. Arutiunov
    • 1
  • G. A. Ryzhak
    • 1
  1. 1.St. Petersburg Institute of Bioregulation and GerontologySt. PetersburgRussia

Personalised recommendations