Advances in Gerontology

, Volume 2, Issue 4, pp 277–286 | Cite as

Epigenetic aspects of peptide-mediated regulation of aging

  • V. Kh. Khavinson
  • A. Yu. Solov’ev
  • D. V. Zhilinskii
  • L. K. Shataeva
  • B. F. Vanyushin


Endogenous peptides in the cyto- and nucleoplasm are formed upon the specific proteasomal degradation of nuclear proteins. These peptides are formed by short blocks of amino-acid residues with charged side groups and therefore a high local concentration of electrostatic charge of either sign is characteristic of them. These peptides are capable of complementary binding to certain short nucleotide sequences in DNA strands. This binding can cause a significant weakening of the interstrand bonds in the double helix of DNA and therefore stimulate the splitting of strands, which is necessary for gene transcription and replication. Aging is always accompanied by a decrease in the degree of genome methylation. The age-related decrease of the degree of methylation of nucleotide repeat sequences in the genome promotes the site-specific binding of short peptides to DNA, which hinders the hydrolysis of non-methylated DNA fragments by endonucleases. The available experimental data on the peculiarities of binding to methylated DNA are indicative of the involvement of short peptides in the epigenetic regulation of aging processes.


epigenetics endogenous peptides complementary binding DNA methylation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berdyshev, G.D., Korotaev, G.K., Boyarskikh, G.V., and Vanyushin, B.F., Nucleotide Composition of DNA and RNA in Somatic Tissues of Salmon during Spawning, Biokhimiya, 1967, vol. 32, pp. 988–993.Google Scholar
  2. 2.
    Brodskii, V.Ya., Khavinson, V.Kh., Zolotarev, V.A., et al., Protein Synthesis Rate in Hepatocyte Culture Isolated from Different-Age Rates. Control and Affected by Livagen Cultures, Izv. Akad. Nauk SSSR, Ser. Biol., 2001, no. 5, pp. 517–521.Google Scholar
  3. 3.
    Vanyushin, B.F., Materialization of Epigenetics or Insufficient Changes of DNA with Great Consequences, Khimiya i Zhizn’, 2004, no. 2, pp. 32–37.Google Scholar
  4. 4.
    Zamyatnin, A.A., Fragmentomics of Natural Peptide Structures, Usp. Biol. Khim., 2009, vol. 49, pp. 405–428.Google Scholar
  5. 5.
    Zin’kovskaya, G.G., Berdyshev, G.D., and Vanyushin, B.F., Tissue-Specific Diminishing and Change of DNA Methylation Rate of the Cattle during Senescence, Biokhimiya, 1978, vol. 43, pp. 1883–1892.Google Scholar
  6. 6.
    Korkushko, O.V., Khavinson, V.Kh., Butenko, G.M., and Shatilo, V.B., Peptidnye preparaty timusa i epifiza v profilaktike uskorennogo stareniya (Peptide Preparations from Thymus and Epiphysis Used for Prophylactics of Accelerated Senescence), St. Petersburg: Nauka, 2002.Google Scholar
  7. 7.
    Korkushko, O.V., Khavinson, V.Kh., Shatilo, V.B., and Antonyuk-Shcheglova, I.A., Peptide Geroprotector Isolated from Epiphysis Decelerates Accelerated Senescence of Elderly People: The Results of 15-Years Observations, Byul. Ekspert. Biol., 2011, vol. 151, no. 3, pp. 343–347.Google Scholar
  8. 8.
    Morozov, V.G. and Khavinson, V.Kh., Cytomedines as a New Class of Biological Regulators of Multicellular Systems, Usp. Sovrem. Biol., 1983, vol. 96, no. 3(6), pp. 339–352.Google Scholar
  9. 9.
    Morozov, V.G. and Khavinson, V.Kh., The Role of Cellular Mediators (Cytomediators) in Regulation of Genetic Activity, Izv. Akad. Nauk SSSR, Ser. Biol., 1985, no. 4, pp. 581–587.Google Scholar
  10. 10.
    Rozenfel’d, S.V., Togo, E.F., Mikheev, V.S., et al., The Influence of Epithalon on Frequency of Chromosomal Damages in SAM Mice with Accelerated Senescence, Byul. Eksper. Biol., 2002, vol. 133, no. 3, pp. 320–322.Google Scholar
  11. 11.
    Fedoreeva, L.I., Kireev, I.I., Khavinson, V.Kh., and Vanyushin, B.F., In vitro Transfer of Short Fluorescent-Labeled Peptides into Nucleus of HeLa Cells and Specific Interaction of Peptides with Deoxyribooligonucleotids and DNA, Biokhimiya, 2011, vol. 76, no. 11, pp. 1505–1516.Google Scholar
  12. 12.
    Khavinson, V.Kh., Bondarev, I.E., and Butyugov, A.A., Peptide Epitalon Induces Telomerase Activity and Elongation of Telomeres in Somatic Human Cells, Byul. Eksper. Biol., 2003, vol. 135, no. 6, pp. 692–695.Google Scholar
  13. 13.
    Khavinson, V.Kh., Bondarev, I.E., Butyugov, A.A., and Smirnova, T.D., Peptide Promoting the Overcome of the Limited Division of Somatic Human Cells, Byul. Eksper. Biol., 2004, vol. 137, no. 5, pp. 613–616.Google Scholar
  14. 14.
    Khavinson, V.Kh. and Morozov, V.G., Peptidy epifiza i timusa v regulyatsii stareniya (Epiphysis and Thymic Peptides in Regulation of Senescence), St. Petersburg: Foliant, 2001.Google Scholar
  15. 15.
    Khavinson, V.Kh., Lezhava, T.A., and Malinin, V.V., The Influence of Short Peptides on Chromatin in Lymphocytes Isolated in Senile People, Byul. Eksper. Biol., 2004, vol. 137, no. 1, pp. 89–93.Google Scholar
  16. 16.
    Khavinson, V.Kh., Solov’ev, A.Yu., and Shataeva, L.K., Molecular Mechanism of Interaction between Oligonucleotides and DNA Double Helix, Byul. Eksper. Biol., 2006, vol. 141, no. 4, pp. 443–447.Google Scholar
  17. 17.
    Khavinson, V.Kh., Solov’ev, A.Yu., and Shataeva, L.K., Melting of DNA Double Helix at the Binding with Geroprotective Tetrapeptide, Byul. Eksper. Biol., 2008, vol. 146, no. 11, pp. 560–562.Google Scholar
  18. 18.
    Khavinson, V.Kh., Fedoreeva, L.I., and Vanyushin, B.F., Short Peptides Regulate Activity of Endonucleases from Wheat Seedlings, Dokl. Akad. Nauk, 2011, vol. 437, no. 1, pp. 124–127.Google Scholar
  19. 19.
    Khavinson, V.Kh., Fedoreeva, L.I., and Vanyushin, B.F., Site-Specific Interaction between Short Peptides and DNA Regulates an Activity of Eukaryotic Endonucleases, Byul. Eksper. Biol., 2011, vol. 151, no. 1, pp. 76–81.Google Scholar
  20. 20.
    Khavinson, V.Kh. and Shataeva, L.K., A Model of Complementary Interaction of Oligopeptides and DNA Double Helix, Med. Akad. Zh., 2005, vol. 5, no. 1, pp. 15–23.Google Scholar
  21. 21.
    Khavinson, V.Kh., Shataeva, L.K., and Bondarev, I.E., The Interaction Model of Regulatory Peptides and DNA Double Helix, Usp. Sovrem. Biol., 2003, vol. 123, no. 5, pp. 467–474.Google Scholar
  22. 22.
    Shataeva, L.K., Ryadnova, I.Yu., and Khavinson, V.Kh., Study of Informative Significance of Oligopeptide Blocks in Regulatory Peptides and Proteins, Usp. Sovrem. Biol., 2002, vol. 122, no. 3, pp. 281–288.Google Scholar
  23. 23.
    Shataeva, L.K., Khavinson, V.Kh., and Ryadnova, I.Yu., Peptidnaya samoregulyatsiya zhivykh sistem (fakty i gipotezy) (Peptide Self-Regulation of Living Systems (Facts and Hypothesis)), St. Petersburg: Nauka, 2003.Google Scholar
  24. 24.
    Acker, J., Wintzerith, M., Vigneron, M., and Kedinger, C., Structure of the Gene Encoding the 14.5 kDa Subunit of Human RNA Polymerase II, Nucleic Acid Res., 1993, vol. 21, no. 23, pp. 5345–5350.PubMedCrossRefGoogle Scholar
  25. 25.
    Alexandrov, V.A., Bespalov, V.G., Morozov, V.G., et al., Study of the Post-Natal Effects of Chemopreventive Agents on Ethylnitrosourea-Induced Transplacental Carcinogenesis in Rats. II. Influence of Low-Molecular-Weight Polypeptide Factors from the Thymus, Pineal Glands, Bone Marrow, Anterior Hypothalamus, Brain Cortex and Brain White Substance, Carcinogenesis, 1996, vol. 17, no. 8, pp. 1931–1934.PubMedCrossRefGoogle Scholar
  26. 26.
    Anisimov, V.N., Bondarenko, L.A., and Khavinson, V.Kh., Effect of Pineal Peptide Preparation (Epithalamin) on Life Span and Pineal and Serum Melatonin Level in Old Rats, Ann. N.Y. Acad. Sci., 1992, vol. 673, pp 53–57.PubMedCrossRefGoogle Scholar
  27. 27.
    Anisimov, V.N., Khavinson, V.Kh., and Morozov, V.G., Carcinogenesis and Aging. IV. Effect of Low-Molecular-Weight Factors of Thymus, Pineal Gland and Anterior Hypothalamus on Immunity, Tumor Incidence and Life Span of C3H/Sn Mice, Mech. Aging Dev., 1982, vol. 19, pp. 245–258.PubMedCrossRefGoogle Scholar
  28. 28.
    Anisimov, V.N., Khavinson, V.Kh., and Morozov, V.G., Effect of Synthetic Dipeptide Thymogen™ (Glu-Trp) on Life Span and Spontaneous Tumor Incidence in Rats, Gerontologist, 1998, vol. 38, pp. 7–8.CrossRefGoogle Scholar
  29. 29.
    Anisimov, V.N., Khavinson, V.Kh., and Morozov, V.G., Immunomodulatory Peptide L-Glu-L-Trp Slows down Aging and Inhibits Spontaneous Carcinogenesis in Rats, Biogerontology, 2000, vol. 1, pp. 55–59.PubMedCrossRefGoogle Scholar
  30. 30.
    Anisimov, V.N., Loktionov, A.S., Khavinson, V.Kh., and Morozov, V.G., Effect of Low-Molecular-Weight Factors of Thymus and Pineal Gland on Life Span and Spontaneous Tumor Development in Female Mice of Different Age, Mech. Aging Dev., 1989, vol. 49, pp. 245–257.PubMedCrossRefGoogle Scholar
  31. 31.
    Anisimov, V.N., Mylnikov, S.V., and Khavinson, V.Kh., Pineal Peptide Preparation Epithalamin Increases the Lifespan of Fruit Flies, Mice and Rats, Mech. Aging Dev., 1998, vol. 103, pp. 123–132.PubMedCrossRefGoogle Scholar
  32. 32.
    Anisimov, V.N., Mylnikov, S.V., Oparina, T.I., and Khavinson, V.Kh., Effect of Melatonin and Pineal Peptide Preparation Epithalamin on Life Span and Free Radical Oxidation in Drosophila melanogaster, Mech. Aging Dev., 1997, vol. 97, pp. 81–91.PubMedCrossRefGoogle Scholar
  33. 33.
    Audhya, T., Scheid, M.P., and Goldstein, G., Contrasting Biological Activities of Thymopoietin and Splenin, Two Closely Related Polypeptide Products of Thymus and Spleen, Proc. Natl. Acad. Sci. USA, 1984, vol. 81, no. 9, pp. 2847–2849.PubMedCrossRefGoogle Scholar
  34. 34.
    Babu, M.M., Luscombe, N.M., Aravind, M., et al., Structure and Evolution of Transcriptional Regulatory Networks, Curr. Opin. Struct. Biol., 2004, vol. 14, pp. 283–291.PubMedCrossRefGoogle Scholar
  35. 35.
    Brendel, V. and Karlin, S., Association of Charge Clusters with Functional Domains of Cellular Transcription Factors, Proc. Natl Acad. Sci. USA, 1989, vol. 86, pp. 5698–5702.PubMedCrossRefGoogle Scholar
  36. 36.
    Dilman, V.M., Anisimov, V.N., Ostroumova, M.N., et al., Increase in Life Span of Rats Following Polypeptide Pineal Extract Treatment, Exp. Pathol., 1979, vol. 17, no. 9, pp. 539–545.Google Scholar
  37. 37.
    Duguid, J.G., Bloomfield, V.A., Benedidas, J.M., Thomas, G.J., Jr., DNA Melting Investigated by Differential Scanning Calorimetry and Raman Spectroscopy, Biophys. J., 1996, vol. 71, no. 6, pp. 3350–3360.PubMedCrossRefGoogle Scholar
  38. 38.
    Ferrington, D.A., Husom, A.D., and Thompson, D.V., Altered Proteosomes Structure, Function, and Oxidation in Aged Muscle, The FASEB J., 2005, vol. 19, pp. 644–646.Google Scholar
  39. 39.
    Ivanov, V.T., Karelin, A.A., Philippova, M.M., et al., Hemoglobin as a Source of Endogenous Bioactive Peptides: The Concept of Tissue-Specific Peptide Pool, Biopolymers, 1997, vol. 43, no. 2, pp. 171–188.PubMedCrossRefGoogle Scholar
  40. 40.
    Jawhari, A., Laine, J.-Ph., Dubaele, S., et al., P52 Mediates XPB Function within the Transcription/Repair Factor TFIIH, J. Biol. Chem., 2002, vol. 277, no. 35, pp. 31761–31767.PubMedCrossRefGoogle Scholar
  41. 41.
    Karlin, S. and Altschul, S.F., Method for Assessing the Statistical Significance of Molecular Sequence Features by Using General Scoring Schemes, Proc. Natl. Acad. Sci. USA, 1990, vol. 87, no. 6, pp. 2264–2268.PubMedCrossRefGoogle Scholar
  42. 42.
    Karlin, S., Mrazek, J., and Gentles, A., Genome Comparisons and Analysis, Curr. Opin. Struct. Biol., 2003, vol. 13, pp. 344–352.PubMedCrossRefGoogle Scholar
  43. 43.
    Khavinson, V.Kh. and Solovieva, D.V., New Approach to the Prophylaxis and Treatment of Age-Related Pathology, Romanian J. Geront. Geriat., 1998, vol. 20, no. 1, pp. 28–34.Google Scholar
  44. 44.
    Khavinson, V.Kh., Chalisova, N.I., and Okulov, V.B., The Neuritestimulating Effect of Peptides from Brain in Dorsal Root Ganglion Neuron Organotypic Culture, Prim. Sensory Neuron., 1997, vol. 2, no. 2, pp. 191–200.CrossRefGoogle Scholar
  45. 45.
    Khavinson, V., Shataeva, L., and Chernova, A., DNA Doublehelix Binds Regulatory Peptides Similarly to Transcription Factors, Neuroendocrinology Lett., 2005, vol. 26, no. 3, pp. 237–241.Google Scholar
  46. 46.
    Khavinson, V., Razumovsky, M., Trofimova, S., et al., Pinealregulating Tetrapeptide Epitalon Improves Eye Retina Condition in Retinitis Pigmentosa, Neuroendocrinology Lett., 2002, vol. 23, pp. 365–368.Google Scholar
  47. 47.
    Kisselev, A.F., Garcia-Calvo, M., Overkleeft, H.S., et al., The Caspase-Like Sites of Proteasomes, Their Substrate Specificity, New Inhibitors and Substrates, and Allosteric Interactions with the Trypsin-Like Sites, J. Biol. Chem., 2003, vol. 278, no. 38, pp. 35869–35877.PubMedCrossRefGoogle Scholar
  48. 48.
    Landsman, D., McBride, O.W., Soares, N., et al., Chromosomal Protein HMG-14. Identification, Characterization and Chromosome Localization of a Functional Gene from the Large Human Multigene Family, J. Biol. Chem., 1989, vol. 264, no. 6, pp. 3421–3427.PubMedGoogle Scholar
  49. 49.
    Lezhava, T., Heterochromatization as a Key Factor in Aging, Mech. Aging Dev., 1984, vol. 28, nos. 2–3, pp. 279–288.PubMedCrossRefGoogle Scholar
  50. 50.
    Lodish H., Berk A., Zipursky S.L., et al., Molecular Cell Biology, New York: W. H. Freeman, 2000.Google Scholar
  51. 51.
    Lustig, B.V. and Jernigan, R.L., Consistencies of Individual DNA Base-Amino Acid Interactions in Structures and Sequences, Nucleic Acids Res., 1995, vol. 23,issue 22, pp. 4707–4711.PubMedCrossRefGoogle Scholar
  52. 52.
    Madani, F., Lindberg, S., Langel, U., et al., Mechanisms of Cellular Uptake of Cell-Penetrating Peptides, J. Biophys., 2011, vol. 2011, article ID 414729.Google Scholar
  53. 53.
    Mandal, S.S., Cho, H., Kim, S., et al., FCP1, a Phosphatase Specific for the Heptapeptide Repeat of the Largest Subunits of RNA Polymerase II, Stimulates Transcription Elongation, Mol. Cell Biol., 2002, vol. 22, no. 21, pp. 7543–7552.PubMedCrossRefGoogle Scholar
  54. 54.
    Morozov, V.F., Badasyan, A.V., Grigoryan, A.V., et al., Stacking and Hydrogen Bonding: DNA Cooperatively at Melting, Biopolymers, 2004, vol. 75, no. 5, pp. 434–439.PubMedCrossRefGoogle Scholar
  55. 55.
    Morozov, V.G. and Khavinson, V.Kh., Natural and Synthetic Thymic Peptides as Therapeutics for Immune Dysfunction, Int. J. Immunopharmacol., 1997, vol. 19, nos. 9–10, pp. 501–505.PubMedCrossRefGoogle Scholar
  56. 56.
    Muller, C.W., Transcriptional Factors: Global and Detailed Views, Curr. Opin. Struct. Biol., 2001, vol. 11, pp. 26–32.PubMedCrossRefGoogle Scholar
  57. 57.
    Ogryzko, V.V., Kotani, T., Zhang, X., et al., Histone-Like TAFs within the PSAF Histone Acetilase Complex, Cell, 1998, vol. 94, no. 1, pp. 35–44.PubMedCrossRefGoogle Scholar
  58. 58.
    Ohno, M., Fornered, M., and Mattaj, I.W., Nucleocytoplasmic Transport: The Last 200 Nanometers, Cell, 1998, vol. 92, no. 2, pp. 327–336.PubMedCrossRefGoogle Scholar
  59. 59.
    Pietrokovski, S., Henikoff, J.G., and Henikoff, S., The BLOKS Database-A System for Protein Classification, Nucleic Acids Res., 1996, vol. 24, pp. 197–200.PubMedCrossRefGoogle Scholar
  60. 60.
    Pisarev, O.A., Morozov, V.G., and Khavinson, V.Kh., Isolation, Physico-Chemical and Biological Propepties of the Immunity Polypeptide Bioregulator from Thymus, in Chemistry Peptides Proteins, Berlin, 1982, vol. 1, p. 137–142.Google Scholar
  61. 61.
    Romanov, G.A. and Vanyushin, B.F., Methylation of Reiterated Sequences in Mammalian DNAs. Effects of the Tissue Type, Age, Malignancy and Hormonal Induction, Biochim. Biophys. Acta, 1981, vol. 653, pp. 204–218.PubMedCrossRefGoogle Scholar
  62. 62.
    Ulrich, H.D., Degradation or Maintenance: Actions of the Ubiquitin System on Eukaryotic Chromatin, Eukaryotic Cell, 2002, vol. 1, no. 1, pp. 1–10.PubMedCrossRefGoogle Scholar
  63. 63.
    Vanyushin, B.F., Nemirovsky, L.E., Klimenko, V.V., et al., The 5-Methylcytosine in DNA of Rats. Tissue and Age Specificity and the Changes Induced by Hydrocortisone and Other Agents, Gerontologia (Basel), 1973, vol. 19, pp. 138–152.CrossRefGoogle Scholar
  64. 64.
    Vanyushin, B.F., Tkacheva, S.G., and Belozersky, A.N., Rare Bases in Animal DNA, Nature, 1970, vol. 225, pp. 948–949.PubMedCrossRefGoogle Scholar
  65. 65.
    Wilson, H.L., McFie, P.J., and Roesler, W.J., Different Transcription Factor Binding Arrays Modulate Gene Promoter, J. Biol. Chem., 2002, vol. 277, no. 46, pp. 43895–43902.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. Kh. Khavinson
    • 1
    • 2
  • A. Yu. Solov’ev
    • 2
  • D. V. Zhilinskii
    • 2
  • L. K. Shataeva
    • 2
  • B. F. Vanyushin
    • 3
    • 4
  1. 1.Pavlov Institute of Physiology of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg Institute of Bioregulation and GerontologySt. PetersburgRussia
  3. 3.Belozerskii Research Institute of Physico-Chemical BiologyMoscowRussia
  4. 4.Moscow State UniversityMoscowRussia

Personalised recommendations