Advances in Gerontology

, Volume 2, Issue 3, pp 230–233 | Cite as

Expression of AIF and CGRP markers in epiphysis and thymus during aging

  • N. S. Linkova
  • A. S. Katanugina
  • V. Kh. Khavinson


The expression of apoptotic inducing factor (AIF), a marker of mitochondrial apoptosis, and calcitonin gene related peptide (CGRP), a neuropeptide, in the autopsy material of the epiphysis and thymus from individuals older than 60 years. The expression of AIF and CGRP was detected in both organs; however, it did not change with age, which indicates the possible preservation of signal functions in the organs of neuroimmunoendocrine system during its aging. A correlation between the AIF and CGRP expression was detected in epiphysis, while this dependence is absent in the thymus. It is possible that some common regulatory molecule that connects two signaling pathways is expressed in the epiphysis (as opposed to the thymus).


epiphysis thymus signal molecules aging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glants, S., Mediko-biologicheskaya statistika (Medical-Biological Statistics), Moscow: Praktika, 1999.Google Scholar
  2. 2.
    Lin’kova, N.S., Polyakova, V.O., Trofimov, A.V., et al., Influence of Epiphysis Peptides on Thymus Activity Suring Senescence, Uspekhi Gerontol., 2010, vol. 23, no. 4, pp. 543–546.Google Scholar
  3. 3.
    Lin’kova, N.S., Polyakova, V.O., Trofimov, A.V., et al., Peptidergic Regulation of Differentiation, Proliferation and Apoptosis of Thymocytes at Senescence of Thymus, Byul. Eksper. Biol., 2011, vol. 151, no. 2, pp. 203–206.Google Scholar
  4. 4.
    Polyakova, V.O., Lin’kova, N.S., and Pichugin, S.A., Dynamics of Apoptosis and Cell Proliferation in Human Pineal Gland at Senescence, Byul. Eksper. Biol., 2010, vol. 150, no. 10, pp. 443–445.Google Scholar
  5. 5.
    Khavinson, V.Kh., Peptidnaya regulyatsiya stareniya (Peptide Regulation of Senescence), St. Petersburg: Nauka, 2009.Google Scholar
  6. 6.
    Khavinson, V.Kh. and Kvetnoi, I.M., Peptide Bioregulators of Apoptosis, Byul. Eksper. Biol., 2000, vol. 130, no. 12, p. 657.Google Scholar
  7. 7.
    Al-Salam, S., Hameed, R., Parvez, H.S., and Adeghate, E., Diabetes Mellitus Decreases the Expression of Calcitonin-Gene Related Peptide, Gamma-Amino Butyric Acid and Glutamic Acid Decarboxylase in Human Pancreatic Islet Cells, Neuroendocrinology Lett., 2009, vol. 30, p. 506.Google Scholar
  8. 8.
    Anisimov, V.N. and Khavinson, V.Kh., Peptide Bioregulation of Aging: Results and Prospects, Biogerontology, 2010, vol. 11, pp. 139–149.PubMedCrossRefGoogle Scholar
  9. 9.
    Dallos, A., Kiss, M., Polyanka, H., et al., Effects of the Neuropeptides Substance P, Calcitonin Gene-Related Peptide, Vasoactive Intestinal Polypeptide and Galanin on the Production of Nerve Growth Factor and Inflammatory Cytokines in Cultured Human Keratinocytes, Neuropeptides, 2006, vol. 40, pp. 251–263.PubMedCrossRefGoogle Scholar
  10. 10.
    Delettre, C., Yuste, V.J., Moubarak, R.S., et al., AIFsh, a Novel Apoptosis-Inducing Factor (AIF) Pro-Apoptotic Isoform with Potential Pathological Relevance in Human Cancer, J. Biol. Chem., 2006, vol. 281, pp. 6413–6427.PubMedCrossRefGoogle Scholar
  11. 11.
    Fabienne, T.S., Sophie, K., Amin, A., et al., Deletion of the Mitochondrial Flavoprotein Apoptosis Inducing Factor (AIF) Induces Cell Apoptosis and Impairs Cell Mass, PLoS ONE, 2009, vol. 4, pp. 4394–4399.CrossRefGoogle Scholar
  12. 12.
    Guo, D., Kassiri, Z., Basu, R., et al., Loss of PI3K{Gamma} Enhances cAMP-Dependent MMP Remodeling of the Myocardial N-Cadherin Adhesion Complexes and Extracellular Matrix in Response to Early Biomechanical Stress, Circulat. Res., 2010, pp. 137–141.Google Scholar
  13. 13.
    Khavinson, V.Kh., Peptides and Aging, Neuroendocrinology Lett., Special Issue, 2002.Google Scholar
  14. 14.
    Khavinson, V.Kh. and Malinin, V.V., Gerontological Aspects of Genome Peptide Regulation, Basel: Karger AG, 2005.Google Scholar
  15. 15.
    Qi, L., Saberi, M., Zmuda, E., et al., Adipocyte CREB Promotes Insulin Resistance in Obesity, Cell Metab., 2009, vol. 9, pp. 277–286.PubMedCrossRefGoogle Scholar
  16. 16.
    Strecker, T., Reeh, P.W., Weyand, M., and Messlinger, K., Release of Calcitonin Gene-Related Peptide from the Isolated Mouse Heart: Methodological Validation of a New Model, Neuropeptides, 2006, vol. 40, pp. 107–113.PubMedCrossRefGoogle Scholar
  17. 17.
    Suzuki, K., Kobayashi, Y., and Morita, T., Significance of Serum Calcitonin Gene-Related Peptide Levels in Prostate Cancer Patients Receiving Hormonal Therapy, Urol. Int., 2009, vol. 82, pp. 291–295.PubMedCrossRefGoogle Scholar
  18. 18.
    Yadava, N. and Nicholls, D.G., Spare Respiratory Capacity Rather than Oxidative Stress Regulates Glutamate Excitotoxicity after Partial Respiratory Inhibition of Mitochondrial Complex I with Rotenone, J. Neurosci., 2007, vol. 27, pp. 7310–7317.PubMedCrossRefGoogle Scholar
  19. 19.
    Yu, W., Mechawar, N., Krantic, S., and Quirion, R., Evidence for the Involvement of Apoptosis-Inducing Factor-Mediated Caspase-Independent Neuronal Death in Alzheimer Disease, Amer. J. Path., 2010, vol. 176, pp. 2209–2218.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • N. S. Linkova
    • 1
  • A. S. Katanugina
    • 1
  • V. Kh. Khavinson
    • 1
    • 2
  1. 1.St. Petersburg Institute of Bioregulation and Gerontology, Northwest BranchRussian Academy of Medical SciencesSt. PetersburgRussia
  2. 2.Pavlov Institute of PhysiologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations